Skip to main content
Log in

Using Landsat-8 Satellite Data to Predict Ore Mineralization for the Northern Territories by the Example of the Central Part of the Maloural’skaya Zone (the Polar Urals)

  • USE OF SPACE INFORMATION ABOUT THE EARTH GEOPHYSICAL AND GEOLOGICAL RESEARCH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In the course of this study, an approach is developed focused on identifying probabilistic zones of increased fracturing (areas with a high density of lineaments), considered a predictive sign for the localization of ore mineralization in the central part of the Maloural’skaya zone (the Polar Urals). This area is promising for the detection of polymetallic-type ore occurrences (Fe, Cu, Cu-Zn, and Au-Cu). Predictive schemes for the distribution of highly permeable rock zones are constructed and promising areas for polymetallic mineralization are identified based on this approach, accounting for the geological information, the distribution of mineral resources, remote sensing data and the results of their processing, and the lineament density schemes. The remote sensing data processing is based on the identification of structures by manual and automatic methods and their integration based on fuzzy logic. Morphostructural maps obtained from the Landsat-8 spacecraft data show that ore occurrences of polymetallic specialization known in the area are located along the perimeter of a large morphostructure of the first order, as well as near radial structures up to 20 km in length in the NE and (less often) in the NW direction. As a result of a comparison of remote sensing data with the geological map of the study area and known ore occurrences, six promising zones are identified. The contoured areas show spatial consistency with several known polymetallic ore occurrences localized in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Abdullah, A., Akhir, J.M., and Abdullah, I., Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran–Sungai Lembing area, Malaysia, Electr. J. Geotech. Eng., 2010, vol. 15, no. 6, pp. 949–958. https://doi.org/10.1039/CS9962500401

    Article  Google Scholar 

  2. Beygi, S., Talovina, I., Tadayon, M., et al., Alteration and structural features mapping in Kacho Mesqal zone Central Iran using ASTER remote sensing data for porphyry copper exploration, Int. J. Image Data Fusion, 2020, vol. 12, no. 1. https://doi.org/10.1080/19479832.2020.1838628

  3. Bolouki, S.M., Ramazi, H.R., Maghsoudi, A., et al., Remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar-Arasbaran area, NW Iran, Remote Sens., 2020, vol. 12, p. 105. https://doi.org/10.3390/rs12010105

    Article  Google Scholar 

  4. Bonham-Carter, G.F., Geographic Information Systems for Geoscientists (Modeling with GIS), Pergamon, 1994.

    Google Scholar 

  5. Bortnikov, N.S., Lobanov, K.V., Volkov, A.V., Galyamov, A.L., and Murashov, K.Yu., Arctic gold resources from a global prospect, Arkt.: Ekol. Ekon., 2014, no. 4, pp. 28–37.

  6. Carranza, E.J.M., Geochemical Anomaly and Mineral Prospectivity Mapping in GIS: Handbook of Exploration and Environmental Geochemistry, Elsevier, 2008, vol. 11.

    Google Scholar 

  7. Cheng, Q., Jing, L., and Panahi, A., Principal component analysis with optimum order sample correlation coefficient for image enhancement, Int. J. Remote Sens., 2006, vol. 27, no. 16, pp. 3387–3401. https://doi.org/10.1080/01431160600606882

    Article  Google Scholar 

  8. Duuring, P., Hagemann, S.G., Novikova, Y., et al., Targeting iron ore in banded iron formations using ASTER data: Weld Range Greenstone Belt, Yilgarn Craton, Western Australia, Econ. Geol., 2012, vol. 107, pp. 585–597.

    Article  Google Scholar 

  9. Ekneligoda, T.C. and Henkel, H., Interactive spatial analysis of lineaments, J. Comput. Geosci., 2010, vol. 36, no. 8, pp. 1081–1090.

    Article  Google Scholar 

  10. Estrada, S., Henjes-Kunst, F., Burgath, K.-P., et al., Insights into the magmatic and geotectonic history of the Voikar Massif, Polar Urals, Z. Dtsch. Ges. Geowiss., 2012, vol. 163, no. 1, pp. 9–41. https://doi.org/10.1127/1860-1804/2012/0163-0009

    Article  Google Scholar 

  11. Geoinformatsionnye tekhnologii v proektirovanii i sozdanii korporativnykh informatsionnykh sistem. Mezhvuzovskii nauchnyi Sbornik (Geoinformation Technologies in the Design and Creation of Corporate Information Systems. Interuniversity Scientific Collection), Ufa, 2012.

  12. Gesse, V.N., Dembovskii, U.S., Monastyr’, U.S., et al., Maps of quaternary formations, Scale 1 : 200 000, Urals series, Sheet Q-41: Vorkuta, St. Petersburg: VSEGEI, 1975.

    Google Scholar 

  13. Gupta, R.P., Remote Sensing Geology, Berlin: Springer, 2017, pp. 180–190, 235–240, 332–336.

    Google Scholar 

  14. Hubbard, B.E., Mack, T.J., and Thompson, A.L., Lineament analysis of mineral areas of interest in Afghanistan, USGS Open, Reston, Va.: U.S. Geological Survey, 2012. http://pubs.usgs.gov/of/2012/1048.

    Google Scholar 

  15. Hung, L., Batelaan, O., Dinh, N.Q., et al., Remote sensing and GIS-based analysis of cave development in the Suoimuoi catchment (Son La, NW Vietnam), J. Cave Karst Stud., 2002, vol. 64, pp. 23–33.

    Google Scholar 

  16. Hung, Q., Batelaan, O., and De Smedt, F., Lineament extraction and analysis, comparison of Landsat ETM and Aster imagery. Case study: Suoimuoi tropical karst catchment, Proc. SPIE, 2005, vol. 5983, pp. 1–12.

    Google Scholar 

  17. Jensen, J.R., Introductory Digital Image Processing: A Remote Sensing Perspective, Upper Saddle River, N.J.: Pearson Prentice Hall, 2005, pp. 276–287, 296–301.

    Google Scholar 

  18. Jolliffe, I.T., Principal Component Analysis, Department of Mathematical Sciences King’s College University of Aberdeen, UK, 2002.

    Google Scholar 

  19. Kim, Y.H., Choe, K.U., and Ri, R.K., Application of fuzzy logic and geometric average: A Cu sulfide deposits potential mapping case study from Kapsan Basin, DPR Korea, Ore Geol. Rev., 2019, vol. 107, pp. 239–247.

    Article  Google Scholar 

  20. Kocal, A., Duzgun, H., and Karpuz, C., Discontinuity mapping with automatic lineament extraction from high resolution satellite imagery, in Proc. of the 20th ISPRS Congress, Istanbul, 2004, pp. 2–6.

  21. Konovalov, A.L., Zylova, L.I., Kazak, A.P., et al., State geological map of the Russian Federation, Scale 1 : 100 0000, West Siberian Series, Sheet Q-42: Salekhard: Explanatory note, St. Petersburg: VSEGEI, 2014.

  22. Kremenetskii, A.A., Justification of search and check activities for lode gold within the Manyukuyu–Varchatinsky ore cluster (the Polyarnaya Nadezhda, Geokhimicheskoe, and Blagodatnoe ore occurrences), Scale 1 : 10000, Moscow: IMGRE, 2012.

    Google Scholar 

  23. Kumar, C., Chatterjee, S., and Oommen, T., Mapping hydrothermal alteration minerals using high-resolution AVIRIS-NG hyperspectral data in the Hutti-Maski gold deposit area, India, Int. J. Remote Sens., 2020, vol. 41, no. 2, pp. 794–812. https://doi.org/10.1080/01431161.2019.1648906

    Article  Google Scholar 

  24. Mallast, U., Gloaguen, R., Geyer, S., et al., Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data, Hydrol. Earth Syst. Sci., 2012, vol. 15, pp. 2665–2678.

    Article  Google Scholar 

  25. Marion, A., Introduction aux techniques de traitement d’images, Paris: Eyrolles, 1987.

    Google Scholar 

  26. Masoud, A. and Koike, K., Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt, J. Afr. Earth Sci., 2006, vol. 45, pp. 467–477.

    Article  Google Scholar 

  27. Masoud, A.A. and Koike, K., Morphotectonics inferred from the analysis of topographic lineaments auto-detected from DEMs: Application and validation for the Sinai peninsula, Egypt, Tectonophysics, 2011, vol. 510, no. 3, pp. 291–308. https://doi.org/10.1016/j.tecto.2011.07.010

    Article  Google Scholar 

  28. Moradpour, H., Paydar, G.R., Feizizadeh, B., et al., Fusion of ASTER satellite imagery, geochemical and geology data for gold prospecting in the Astaneh granite intrusive, West Central Iran, Int. J. Image Data Fusion, 2022, vol. 13, no. 1, pp. 71–94. https://doi.org/10.1080/19479832.2021.1915395

    Article  Google Scholar 

  29. Nawaz, A. and Magiera, J., Remote sensing based geological mapping and mineral exploration of the area of North Waziristan, in 15th SGA Meeting, Glasgow, UK, 2019, vol. 3, pp. 1378–1381.

  30. Nykänen, V., Groves, D.I., Ojala, V.J., et al., Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland, Aust. J. Earth Sci., 2008, vol. 55, pp. 25–38.

    Article  Google Scholar 

  31. Pour, A.B., Park Tae-Yoon, S., Park, Y., et al., Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 multispectral satellite imagery for prospecting copper–gold mineralization in the northeastern Inglefield Mobile Belt (IMB), Northwest Greenland, Remote Sens., 2019, vol. 11, no. 20, p. 2430. https://doi.org/10.3390/rs11202430

    Article  Google Scholar 

  32. Pour, A.B., Sekandari, M., Rahmani, O., et al., Identification of phyllosilicates in the Antarctic environment using ASTER satellite data: Case study from the mesa range, Campbell and Priestley glaciers, Northern Victoria Land, Remote Sens., 2021a, vol. 13, no. 1, p. 38. https://doi.org/10.3390/rs13010038

    Article  Google Scholar 

  33. Pour, A.B., Zoheir, B., Pradhan, B., et al., Editorial for the special issue: Multispectral and hyperspectral remote sensing data for mineral exploration and environmental monitoring of mined areas, Remote Sens., 2021b, vol. 13, no. 3, p. 519. https://doi.org/10.3390/rs13030519

    Article  Google Scholar 

  34. Rahnama, M. and Gloaguen, R., A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, Part 1: Line segment detection and extraction, Remote Sens., 2014, pp. 5938–5958. https://doi.org/10.3390/rs6075938

  35. Ramli, M.F., Yusof, N., Yusoff, M.K., et al., Lineament mapping and its application in landslide hazard assessment: A review, Bull. Eng. Geol. Environ., 2010, pp. 215–233.

  36. Remizov, D.N., Shishkin, M.A., Grigor’ev, S.I., Stepunin, A.V., et al., State geological map of the Russian Federation, Scale 1 : 200 000, Ser. Polar Urals, Sheet Q-41-XVI (Khordyus), Explanatory note, St. Petersburg: VSEGEI, 2014.

  37. Sarp, G., Lineament analysis from satellite images, north-west of Ankara, M. Sci. Thesis, Middle East Technical University, 2005.

  38. Schowengerdt, R.A., Remote Sensing: Models and Methods for Image Processing, Elsevier, 2007.

    Book  Google Scholar 

  39. Shishkin, M.A., Astapov, A.P., Kabatov, N.V., et al., State geological map of the Russian Federation, Scale 1 : 1000000, Ural Series, Sheet Q41 (Vorkuta), Explanatory note, St. Petersburg: VSEGEI, 2007.

  40. Sobolev, I.D., Soboleva, A.A., Udoratina, O.V., et al., Devonian island-arc magmatism of the Voikar zone in the Polar Urals, Geotectonics, 2018, vol. 52, no. 5, pp. 531–563.

    Article  Google Scholar 

  41. State geological map of the Russian Federation, Scale 1 : 1000 000, Urals ser., Sheet Q-41: Vorkuta, St. Petersburg: VSEGEI, 2007.

  42. Süzen, M.L. and Toprak, V., Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey, Int. J. Remote Sens., 1998, vol. 19, no. 6, pp. 1101–1114.

    Article  Google Scholar 

  43. Thannoun, R.G., Automatic extraction and geospatial analysis of lineaments and their tectonic significance in some areas of Northern Iraq using remote sensing techniques and GIS, Int. J. Enhanced Res. Sci. Technol. Eng., 2013, vol. 2, no. 2.

  44. Verdiansyah, O., Aplikasi lineament density analysis untuk membatasi pola kaldera purba Godean, J. Teknol. Technosci., 2017, vol. 9, no. 2, pp. 162–171.

    Google Scholar 

  45. Verdiansyah, O., A desktop study to determine mineralization using lineament density analysis at Kulon Progo Mountains, Yogyakarta and Central Java province, Indonesia, Indones. J. Geogr., 2019, vol. 51, no. 1, pp. 31–41. https://doi.org/10.22146/ijg.37442

    Article  Google Scholar 

  46. Vikentyev, I.V., Ivanova, Y.N., Tyukova, E.E., et al., Porphyry-style Petropavlovskoe gold deposit, the Polar Urals: Geological position, mineralogy, and formation conditions, Geol. Ore Deposits, 2017, vol. 59, no. 6, pp. 482–520.

    Article  Google Scholar 

  47. Zadeh, L.A., Fuzzy sets, Inf. Control, 1965, vol. 8, no. 3, pp. 338–353. https://doi.org/10.1016/s0019-9958(65)90241

    Article  Google Scholar 

  48. Zhang, N., Zhou, K., and Du, X., Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu–Tousuquan island arc, Xinjiang, NW China, J. Afr. Earth Sci., 2017, pp. 84–96.

  49. Zhumabek, Z. and Bibossinov, A.A., Fremd Automated lineament analysis to assess the geodynamic activity areas, Procedia Comput. Sci., 2017, vol. 121, pp. 699–706. https://doi.org/10.1016/j.procs.2017.11.091

    Article  Google Scholar 

  50. Zoheir, B., Emam, A., Abdel-Wahed, M., et al., Multispectral and radar data for the setting of gold mineralization in the South Eastern Desert, Egypt, Remote Sens., 2019, vol. 11, p. 1450.

    Article  Google Scholar 

Download references

Funding

This work was carried out as part of the State Task of Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Ivanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, J.N., Nafigin, I.O. Using Landsat-8 Satellite Data to Predict Ore Mineralization for the Northern Territories by the Example of the Central Part of the Maloural’skaya Zone (the Polar Urals). Izv. Atmos. Ocean. Phys. 59, 1055–1069 (2023). https://doi.org/10.1134/S0001433823090098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090098

Keywords:

Navigation