Skip to main content
Log in

Registering the Peculiarities of Wind Wave Breaking from Unmanned Aerial Vehicles

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING SEAS AND OCEANS FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of using an unmanned aerial vehicle (UAV) to study the processes of gravitational wave breaking are presented. The experiments are carried out in the coastal zone of the western Crimea (the area of Sevastopol) in the range of wind speeds from 5.5 to 9.5 m/s. The determination of the geometric dimensions of breaking and their speeds is carried out according to video recordings of the sea surface obtained from the UAV. It is shown that the spatial resolution of the transformed image plays a key role in separating the active phase of breaking and residual foam. Errors occur in determining the kinematic properties of the breaking with a rough spatial resolution. The proportion of the sea surface covered with foam of breaking waves, the ratio of the maximum length of the spume to the length of the breaking wave, and the distribution of the total breaking length in the intervals of movement speeds per surface unit (obtained from UAVs with a spatial resolution better than 0.5m) are in agreement with results of other authors. Data analysis shows that the use of UAVs makes it possible to study the statistical characteristics and kinematics of wind wave breaking. At the same time, it is necessary to take into account the effect of spatial resolution in the video frame, which can lead to the distortion or omission of measurement data at values comparable to or exceeding the breaking scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Anguelova, M.D. and Bettenhausen, M.H., Whitecap fraction from satellite measurements: Algorithm description, J. Geophys. Res.: Oceans, 2019, vol. 124, no. 3, pp. 1827–1857. https://doi.org/10.1029/2018JC014630

    Article  Google Scholar 

  2. Anguelova, M.D. and Webster, F., Whitecap coverage from satellite measurements: a first step toward modeling the variability of oceanic whitecaps, J. Geophys. Res.: Oceans, 2006, vol. 111,p. C03017. https://doi.org/10.1029/2005JC003158

    Article  Google Scholar 

  3. Babanin, A.V., Breaking of ocean surface waves, Acta Phys. Slovaca, 2009, vol. 59, no. 4, pp. 305–535. https://doi.org/10.2478/v10155-010-0097-5

    Article  Google Scholar 

  4. Bondur, V.G. and Sharkov, E.A., Statistical characteristics of foam formations on a disturbed sea surface, Okeanologiya, 1982, vol. 22, no. 3, pp. 372–379.

    Google Scholar 

  5. Bondur, V.G. and Sharkov, E.A., Statistical characteristics of linear elements of foam formations on the sea-surface as derived from optical sounding data, Issled. Zemli Kosmosa, 1986, no. 4, pp. 21–31.

  6. Bortkovskii, R.S., Estimation of the oxygen and CO2 mean exchange between the ocean and the atmosphere in key areas of the ocean, Izv., Atmos. Ocean. Phys., 2006, vol. 42, no. 2, pp. 228–235.

    Article  Google Scholar 

  7. Bouguet, J.Y., Camera calibration toolbox for MATLAB, Computational Vision Group, California Institute of Technology, Pasadena, Calif., 2001.

    Google Scholar 

  8. Brouwer, R.L., de Schipper, M.A., Rynne, P.F., Graham, F.J., and Reniers, A.J.H.M., MacMahan, J.H., Surfzone monitoring using rotary wing unmanned aerial vehicles, J. Atmos. Oceanic Technol., 2015, vol. 32, no. 4, pp. 855–863. https://doi.org/10.1175/jtech-d-14-00122.1

    Article  Google Scholar 

  9. Brumer, S.E., Zappa, C.J., Brooks, I.M., Tamura, H., Brown, S.M., Blomquist, B.W., and Cifuentes-Lorenzen, A., Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS, J. Phys. Oceanogr., 2017, vol. 47, no. 9, pp. 2211–2235. https://doi.org/10.1175/JPO-D-17-0005.1

    Article  Google Scholar 

  10. Callaghan, A.H., Deane, G.B., Stokes, M.D., and Ward, B., Observed variation in the decay time of oceanic whitecap foam, J. Geophys. Res.: Oceans, 2012, vol. 117, no. C9. https://doi.org/10.1029/2012JC008147

  11. Dulov, V.A., Kudryavtsev, V.N., Sherbak, O.G., and Grodsky, S.A., Observations of wind wave breaking in the Gulf Stream frontal zone, Global Atmos. Ocean. Syst., 1998, vol. 6, no. 3, pp. 209–242.

    Google Scholar 

  12. Dulov, V.A., Kudryavtsev, V.N., and Bol’shakov, A.N., A field study of white caps coverage and its modulations by energy containing waves, in Gas Transfer at Water Surface, Donelan, M.A., Drennan, W.M., Saltzman, E.S., and Wanninkhof, R., Eds., Washington, DC: AGU, 2002, pp. 187–192.

    Google Scholar 

  13. Dulov, V.A., Korinenko, A.E., Kudryavtsev, V.N., and Malinovsky, V.V., Modulation of wind-wave breaking by long surface waves, Remote Sens., 2021, vol. 13, no. 14, pp. 1–15. https://doi.org/10.3390/rs13142825

    Article  Google Scholar 

  14. Gemmrich, J.R., Banner, M.L., and Garrett, C., Spectrally resolved energy dissipation rate and momentum flux of breaking waves, J. Phys. Oceanogr., 2008, vol. 8, no. 6, pp. 1296–1312. https://doi.org/10.1175/2007JPO3762.1

    Article  Google Scholar 

  15. Holman, R.A., Brodie, K.L., and Spore, N.J., Surf zone characterization using a small quadcopter: Technical issues and procedures, IEEE Trans. Geosci. Remote Sens., 2017, vol. 55, no. 4, pp. 2017–2027. https://doi.org/10.1109/tgrs.2016.2635120

    Article  Google Scholar 

  16. Kleiss, J.M. and Melville, W.K., Observations of wave breaking kinematics in fetch-limited seas, J. Phys. Oceanogr., 2010, vol. 40, no. 12, pp. 2575–2604. https://doi.org/10.1175/2010JPO4383.1

    Article  Google Scholar 

  17. Kleiss, J.M. and Melville, W.K., The analysis of sea surface imagery for whitecap kinematics, J. Atmos. Oceanic Technol., 2011, vol. 28, no. 2, pp. 219–243. https://doi.org/10.1175/2010JTECHO744.1

    Article  Google Scholar 

  18. Klemas, V.V., Coastal and environmental remote sensing from unmanned aerial vehicles: An overview, J. Coastal Res., 2015, vol. 31, no. 5, pp. 1260–1267. https://doi.org/10.2112/JCOASTRES-D-15-00005.1

    Article  Google Scholar 

  19. Korinenko, A.E., Malinovsky, V.V., and Kudryavtsev, V.N., Experimental research of statistical characteristics of wind wave breaking, Phys. Oceanogr., 2018, vol. 25, no. 6, pp. 489–500. https://doi.org/10.22449/1573-160X-2018-6-489-50

    Article  Google Scholar 

  20. Korinenko, A.E., Malinovsky, V.V., Kudryavtsev, V.N., and Dulov, V.A., Statistical characteristics of wave breakings and their relation with the wind waves' energy dissipation based on the field measurements, Phys. Oceanogr., 2020, vol. 27, no. 5, pp. 472–488. https://doi.org/10.22449/1573-160X-2020-5-472-488

    Article  Google Scholar 

  21. Korinenko, A.E., Malinovsky, V.V., Dulov, V.A., and Kudryavtsev, V.N., Estimation of the “whitecap” lifetime of breaking wave, Fundam. Appl. Hydrophys., 2022, vol. 15, no. 1, pp. 61–72. https://doi.org/10.48612/fpg/5g5t-4mzd-94ab

    Article  Google Scholar 

  22. Kubryakov, A.A., Kudryavtsev, V.N., and Stanichny, S.V., Application of Landsat imagery for the investigation of wave breaking, Remote Sens. Environ., 2021a, vol. 253, p. 112144. https://doi.org/10.1016/j.rse.2020.112144

    Article  Google Scholar 

  23. Kubryakov, A.A., Lishaev, P.N., Chepyzhenko, A.I., Aleskerova, A.A., Kubryakova, E.A., Medvedeva, A.V., and Stanichny, S.V., Impact of submesoscale eddies on the transport of suspended matter in the coastal zone of Crimea based on drone, satellite, and in situ measurement data, Oceanology (Engl. Transl.), 2021b, vol. 61, no. 2, pp. 159–172. https://doi.org/10.1134/S0001437021020107

  24. Kudryavtsev, V.N., Dulov, V.A., Shrira, V., and Malinovsky, V.V., On vertical structure of wind-driven sea surface currents, J. Phys. Oceanogr., 2008, vol. 38, no. 10, pp. 2121–2144. https://doi.org/10.1175/2008JPO3883.1

    Article  Google Scholar 

  25. Melville, W.K. and Matusov, P., Distribution of breaking waves at the ocean surface, Nature, 2002, vol. 417, no. 6884, pp. 58–63. https://doi.org/10.1038/417058a

    Article  Google Scholar 

  26. Mironov, A.S. and Dulov, V.A., Detection of wave breaking using sea surface video records, Meas. Sci. Technol., 2008, vol. 19, no. 1, p. 015405. https://doi.org/10.1088/0957-0233/19/1/015405

    Article  Google Scholar 

  27. Monahan, E.C. and O’Muircheartaigh, I.G., Whitecaps and the passive remote sensing of the ocean surface, Int. J. Remote Sens., 1986, vol. 7, no. 5, pp. 627–642. https://doi.org/10.1080/01431168608954716

    Article  Google Scholar 

  28. Osadchiev, A., Barymova, A., Sedakov, R., Zhiba, R., and Dbar, R., Spatial structure, short-temporal variability, and dynamical features of small river plumes as observed by aerial drones: Case study of the Kodor and Bzyp river plumes, Remote Sens., 2020, vol. 12, no. 18, p. 3079. https://doi.org/10.3390/rs12183079

    Article  Google Scholar 

  29. Phillips, O.M., Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, J. Fluid Mech., 1985, vol. 156, pp. 505–531. https://doi.org/10.1017/S0022112085002221

    Article  Google Scholar 

  30. Phillips, O.M., Posner, F.L., and Hansen, J.P., High range resolution radar measurements of the speed distribution of breaking events in wind-generated ocean waves: Surface impulse and wave energy dissipation rates, J. Phys. Oceanogr., 2001, vol. 31, no. 2, pp. 450–460. https://doi.org/10.1175/1520-0485(2001)031<0450:HRRRMO>2.0.CO;2

    Article  Google Scholar 

  31. Pivaev, P.D., Kudryavtsev, V.N., Korinenko, A.E., and Malinovsky, V.V., Field observations of breaking of dominant surface waves, Remote Sens., 2021, vol. 13, no. 16, p. 3321. https://doi.org/10.3390/rs13163321

    Article  Google Scholar 

  32. Schwendeman, M., Thomson, J., and Gemmrich, J.R., Wave breaking dissipation in a young wind sea, J. Phys. Oceanogr., 2014, vol. 44, no. 1, pp. 104–127. https://doi.org/10.1175/JPO-D-12-0237.1

    Article  Google Scholar 

  33. Sharkov, E.A., Obrushayushchiesya morskie volny: struktura, geometriya, elektrodinamika (Breaking Sea Waves: Structure, Geometry, and Electrodynamics) Moscow: Nauchnyi mir, 2009.

  34. Sutherland, P. and Melville, W.K., Field measurements and scaling of ocean surface wave-breaking statistics, Geophys. Res. Lett., 2013, vol. 40, no. 12, pp. 3074–3079. https://doi.org/10.1002/grl.50584

    Article  Google Scholar 

  35. Sutherland, P. and Melville, W.K., Field measurements of surface and near-surface turbulence in the presence of breaking waves, J. Phys. Oceanogr., 2015, vol. 45, no. 4, pp. 943–965. https://doi.org/10.1175/jpo-d-14-0133.1

    Article  Google Scholar 

  36. Thorpe, S.A. and Hall, A.J., The characteristics of breaking waves, bubble clouds, and near-surface currents observed using side-scan sonar, Cont. Shelf Res., 1983, vol. 1, no. 4, pp. 353–384. https://doi.org/10.1016/0278-4343(83)90003-1

    Article  Google Scholar 

  37. Thorpe, S.A., Belloul, M.B., and Hall, A.J., Internal waves and whitecaps, Nature, 1987, vol. 330, pp. 740–742. https://doi.org/10.1038/330740a0

    Article  Google Scholar 

  38. Wu, L., Rutgersson, A., and Sahl’ee, E., Upper-ocean mixing due to surface gravity waves, J. Geophys. Res.: Oceans, 2015, vol. 120, no. 12, pp. 8210–8228. https://doi.org/10.1002/2015JC011329

    Article  Google Scholar 

  39. Yurovskaya, M., Rascle, N., Kudryavtsev, V., Chapron, B., Marie, L., and Molemaker, J., Wave spectrum retrieval from airborne sunglitter images, Remote Sens. Environ., 2018, vol. 217, pp. 61–71. https://doi.org/10.1016/j.rse.2018.07.026

    Article  Google Scholar 

  40. Yurovsky, Y.Y., Kubryakov, A.A., Plotnikov, E.V., and Lishaev, P.N., Submesoscale currents from UAV: An experiment over small-scale eddies in the coastal Black Sea, Remote Sens., 2022, vol. 14, no. 14, pp. 1–18. https://doi.org/10.3390/rs14143364

    Article  Google Scholar 

Download references

Funding

This work was carried out as part of State Tasks FNNN-2021-0004 and 0763-2020-0005; field data was obtained under Russian Science Foundation project no. 21-17-00236, https://rscf.ru/project/21-17-00236/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Korinenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korinenko, A.E., Malinovsky, V.V. & Kubryakov, A.A. Registering the Peculiarities of Wind Wave Breaking from Unmanned Aerial Vehicles. Izv. Atmos. Ocean. Phys. 59, 1082–1092 (2023). https://doi.org/10.1134/S0001433823090128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090128

Keywords:

Navigation