Skip to main content
Log in

Abnormally Long Absence of Polar Stratospheric Clouds in the Arctic in Midwinter According to Satellite Observations

  • PHYSICAL BASES AND METHODS OF STUDYING THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Polar stratospheric clouds (PSCs) play a significant role in ozone depletion in the polar regions, acting as “surfaces” for heterogeneous reactions proceeding with the release of photochemically active molecular chlorine from late winter to early spring. Moreover, during the winter, chlorine “reservoirs,” which are reagents for heterogeneous reactions, accumulate on PSC particles. When PSC particles are destroyed in midwinter, the accumulation of chlorine compounds is interrupted, and from late winter to spring, ozone depletion is not observed even under conditions of the strong polar vortex, in the presence of newly formed PSCs. Using the vortex delineation method, we studied the dynamics of the Arctic polar vortex in the winters of 1984–1985, 1998–1999, 2001–2002, 2012–2013, and 2018–2019 as the reasons for the abnormally long absence of PSCs in the Arctic in midwinter, when they existed in January within no more than 5 days according to satellite observations. The PSC melting in these years was observed when the dynamic barrier of the polar vortex weakened due to a local decrease in wind speed along the vortex edge below 20 m/s in the lower stratosphere, which was recorded throughout almost all of January. These cases are the only examples of unusual weakening of the Arctic polar vortex in midwinter for the period from 1979 to 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Ageyeva, V.Y., Gruzdev, A.N., Elokhov, A.S., Mokhov, I.I., and Zueva, N.E., Sudden stratospheric warmings: Statistical characteristics and influence on NO2 and O3 total contents, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 5, pp. 477–486. https://doi.org/10.1134/S0001433817050036

    Article  Google Scholar 

  2. Aloyan, A.E., Yermakov, A.N., and Arutyunyan, V.O., Modeling the formation of polar stratospheric clouds with allowance for kinetic and heterogeneous processes, Izv., Atmos. Ocean. Phys., 2015, vol. 51, no. 3, pp. 241–250. https://doi.org/10.1134/S0001433815030020

    Article  Google Scholar 

  3. Ayarzagüena, B., Polvani, L.M., Langematz, U., Akiyoshi, H., Bekki, S., Butchart, N., Dameris, M., Deushi, M., Hardiman, S.C., Jockel, P., Klekociuk, A., Marchand, M., Michou, M., Morgenstern, O., O’Connor, et al., No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI, Atmos. Chem. Phys., 2018, vol. 18, no. 15, pp. 11277–11287. https://doi.org/10.5194/acp-18-11277-2018

    Article  Google Scholar 

  4. Brunet, G. and Montgomery, M.T., Vortex Rossby waves on smooth circular vortices: Part I. Theory, Dyn. Atmos. Oceans, 2002, vol. 35, no. 2, pp. 153–177. https://doi.org/10.1016/S0377-0265(01)00087-2

    Article  Google Scholar 

  5. Ebert, M., Weigel, R., Kandler, K., Günther, G., and Molleker, S., Grooß, J.-U., Vogel, B., Weinbruch, S., and Borrmann, S., Chemical analysis of refractory stratospheric aerosol particles collected within the Arctic vortex and inside polar stratospheric clouds, Atmos. Chem. Phys., 2016, vol. 16, no. 13, pp. 8405–8421. https://doi.org/10.5194/acp-16-8405-2016

    Article  Google Scholar 

  6. Engel, I., Luo, B.P., Pitts, M.C., Poole, L.R., and Hoyle, C.R., Grooß, J.-U., Dörnbrack, A., and Peter, T., Heterogeneous formation of polar stratospheric clouds. Part 2: Nucleation of ice on synoptic scales, Atmos. Chem. Phys., 2013, vol. 13, no. 21, pp. 10769–10785. https://doi.org/10.5194/acp-13-10769-2013

    Article  Google Scholar 

  7. Gelaro, R., McCarty, W., Suarez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, et al., The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), J. Clim., 2017, vol. 30, no. 14, pp. 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  8. Gomez-Martin, L., Toledo, D., Prados-Roman, C., Adame, J.A., Ochoa, H., and Yela, M., Polar stratospheric clouds detection at Belgrano II Antarctic station with visible ground-based spectroscopic measurements, Remote Sens., 2021, vol. 13, no. 8, p. 1412. https://doi.org/10.3390/rs13081412

    Article  Google Scholar 

  9. Grooß, J.-U. and Müller, R., Simulation of record Arctic stratospheric ozone depletion in 2020, J. Geophys. Res.: Atmos., 2021, vol. 126, no. 12, p. e2020JD033339. https://doi.org/10.1029/2020JD033339

  10. Harris, N.R.P., Lehmann, R., Rex, M., and Gathen, P., A closer look at Arctic ozone loss and polar stratospheric clouds, Atmos. Chem. Phys., 2010, vol. 10, no. 17, pp. 8499–8510. https://doi.org/10.5194/acp-10-8499-2010

    Article  Google Scholar 

  11. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., et al., The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 2020, vol. 146, no. 729, pp. 1–51. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  12. Hoyle, C.R., Engel, I., Luo, B.P., Pitts, M.C., and Poole, L.R., Grooß, J.-U., and Peter, T., Heterogeneous formation of polar stratospheric clouds. Part 1: Nucleation of nitric acid trihydrate (NAT), Atmos. Chem. Phys., 2013, vol. 13, no. 18, pp. 9577–9595. https://doi.org/10.5194/acp-13-9577-2013

    Article  Google Scholar 

  13. Jaiser, R., Dethloff, K., and Handorf, D., Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes, Tellus A, 2013, vol. 65, no. 1, p. 19375. https://doi.org/10.3402/tellusa.v65i0.19375

    Article  Google Scholar 

  14. Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim, T., and Yoon, J.H., Weakening of the stratospheric polar vortex by Arctic sea-ice loss, Nat. Commun., 2014, vol. 5, p. 4646. https://doi.org/10.1038/ncomms5646

    Article  Google Scholar 

  15. Kirner, O., Ruhnke, R., Buchholz-Dietsch, J., Jöckel, P., Brühl, C., and Steil, B., Simulation of polar stratospheric clouds in the chemistry-climate-model EMAC via the submodel PSC, Geosci. Model Dev., 2011, vol. 4, no. 1, pp. 169–182. https://doi.org/10.5194/gmd-4-169-2011

    Article  Google Scholar 

  16. Lawrence, Z.D., Perlwitz, J., Butler, A.H., Manney, G.L., Newman, P.A., Lee, S.H., and Nash, E.R., The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic Oscillation and ozone loss, Geophys. Res. Lett., 2020, vol. 125, no. 22, p. e2020JD033271. https://doi.org/10.1029/2020JD033271

  17. Manney, G.L. and Zurek, R.W., On the motion of air through the stratospheric polar vortex, J. Atmos. Sci., 1994, vol. 51, no. 20, pp. 2973–2994. https://doi.org/10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2

    Article  Google Scholar 

  18. Massoli, P., Maturilli, M., and Neuber, R., Climatology of Arctic polar stratospheric clouds as measured by lidar in Ny-Ålesund, Spitsbergen (79°N, 12°E), J. Geophys. Res.: Atmos., 2006, vol. 111, no. 9, p. D09206. https://doi.org/10.1029/2005JD005840

    Article  Google Scholar 

  19. Mitchell, D.M., Osprey, S.M., Gray, L.J., Butchart, N., Hardiman, S.C., Charlton-Perez, A.J., and Watson, P., The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex, J. Atmos. Sci., 2012, vol. 69, no. 8, pp. 2608–3812. https://doi.org/10.1175/JAS-D-12-021.1

    Article  Google Scholar 

  20. Molleker, S., Borrmann, S., Schlager, H., Luo, B., Frey, W., Klingebiel, M., Weigel, R., Ebert, M., Mitev, V., Matthey, R., Woiwode, W., Oelhaf, H., Dörnbrack, A., Stratmann, G., Grooß, J.-U., et al., Microphysical properties of synoptic-scale polar stratospheric clouds: In situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex, Atmos. Chem. Phys., 2014, vol. 14, no. 19, pp. 10785–10801. https://doi.org/10.5194/acp-14-10785-2014

    Article  Google Scholar 

  21. Montgomery, M.T. and Brunet, G., Vortex Rossby waves on smooth circular vortices: Part ii. Idealized numerical experiments for tropical cyclone and polar vortex interiors, Dyn. Atmos. Oceans, 2002, vol. 35, no. 2, pp. 179–204. https://doi.org/10.1016/S0377-0265(01)00088-4

    Article  Google Scholar 

  22. Newman, P., Lait, L.R., Schoeberl, M., Nash, E.R., Kelly, K., Fahey, D.W., Nagatani, R., Toohey, D., Avallone, L., and Anderson, J., Stratospheric meteorological conditions in the Arctic polar vortex, 1991 to 1992, Science, 1993, vol. 261, no. 5125, pp. 1143–1146. https://doi.org/10.1126/science.261.5125.1143

    Article  Google Scholar 

  23. Newman, P.A., Kawa, S.R., and Nash, E.R., On the size of the Antarctic ozone hole, Geophys. Res. Lett., 2004, vol. 31, no. 21, p. L21104. https://doi.org/10.1029/2004GL020596

    Article  Google Scholar 

  24. Pitts, M.C., Poole, L.R., and Gonzalez, R., Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017, Atmos. Chem. Phys., 2018, vol. 18, no. 15, pp. 10881–10913. https://doi.org/10.5194/acp-18-10881-2018

    Article  Google Scholar 

  25. Polvani, L.M. and Saravanan, R., The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere, J. Atmos. Sci., 2000, vol. 57, no. 21, pp. 3663–3685. https://doi.org/10.1175/1520-0469(2000)057<3663:TTDSOB>2.0.CO;2

    Article  Google Scholar 

  26. Rodriguez, J.M., Ko, M.K.W., Sze, N.D., Heisey, C.W., Yue, G.K., and McCormick, M.P., Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo, Geophys. Res. Lett., 1994, vol. 21, no. 3, pp. 209–212. https://doi.org/10.1029/93GL03537

    Article  Google Scholar 

  27. Screen, J.A., Simulated atmospheric response to regional and pan-Arctic sea ice loss, J. Clim., 2017, vol. 30, no. 11, pp. 3945–3962. https://doi.org/10.1175/JCLI-D-16-0197.1

    Article  Google Scholar 

  28. Screen, J.A., Arctic sea ice at 1.5 and 2°C, Nat. Clim. Change, 2018, vol. 8, pp. 362–363. https://doi.org/10.1038/s41558-018-0137-6

    Article  Google Scholar 

  29. Sigmond, M., Fyfe, J.C., and Swart, N.C., Ice-free arctic projections under the Paris Agreement, Nat. Clim. Change, 2018, vol. 8, pp. 404–408. https://doi.org/10.1038/s41558-018-0124-y

    Article  Google Scholar 

  30. Sobel, A.H., Plumb, R.A., and Waugh, D.W., Methods of calculating transport across the polar vortex edge, J. Atmos. Sci., 1997, vol. 54, no. 18, pp. 2241–2260. https://doi.org/10.1175/1520-0469(1997)054<2241:MOCTAT>2.0.CO;2

    Article  Google Scholar 

  31. Solomon, S., Stratospheric ozone depletion: a review of concepts and history, Rev. Geophys., 1999, vol. 37, no. 3, pp. 275–316. https://doi.org/10.1029/1999RG900008

    Article  Google Scholar 

  32. Solomon, S., Garcia, R.R., Rowland, F.S., and Wuebbles, D.J., On the depletion of Antarctic ozone, Nature, 1986, vol. 321, pp. 755–758. https://doi.org/10.1038/321755a0

    Article  Google Scholar 

  33. Solomon, S., Kinnison, D., Bandoro, J., and Garcia, R., Simulation of polar ozone depletion: An update, J. Geophys. Res., 2015, vol. 120, no. 15, pp. 7958–7974. https://doi.org/10.1002/2015JD023365

    Article  Google Scholar 

  34. Steiner, M., Luo, B., Peter, T., Pitts, M.C., and Stenke, A., Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements, Geosci. Model Dev., 2021, vol. 14, no. 2, pp. 935–959. https://doi.org/10.5194/gmd-14-935-2021

    Article  Google Scholar 

  35. Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M.D., Hamilton, K., and Ramachandran, S., Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 2002, vol. 107, no. 24, p. ACL28. https://doi.org/10.1029/2002JD002090

    Article  Google Scholar 

  36. Stroeve, J. and Notz, D., Changing state of arctic sea ice across all seasons, Environ. Res. Lett., 2018, vol. 13, no. 10, p. 103001. https://doi.org/10.1088/1748-9326/aade56

    Article  Google Scholar 

  37. Tritscher, I., Pitts, M.C., Poole, L.R., Alexander, S.P., Cairo, F., and Chipperfield, M.P., Grooß, J.-U., Höpfner, M., Lambert, A., Luo, B., Molleker, S., Orr, A., Salawitch, R., Snels, M., Spang, R., et al., Polar stratospheric clouds: Satellite observations, processes, and role in ozone depletion, Rev. Geophys., 2021, vol. 59, no. 2, e2020RG000702. https://doi.org/10.1029/2020RG000702

  38. Waugh, D.W. and Randel, W.J., Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics, J. Atmos. Sci., 1999, vol. 56, no. 11, pp. 1594–1613. https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2

    Article  Google Scholar 

  39. Waugh, D.W., Sobel, A.H., and Polvani, L.M., What is the polar vortex and how does it influence weather?, Bull. Am. Meteorol. Soc., 2017, vol. 98, no. 1, pp. 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1

    Article  Google Scholar 

  40. Zuev, V.V. and Savelieva, E., The role of the polar vortex strength during winter in Arctic ozone depletion from late winter to spring, Polar Sci., 2019, vol. 22, p. 100469. https://doi.org/10.1016/j.polar.2019.06.001

    Article  Google Scholar 

  41. Zuev, V.V. and Savelieva, E., Arctic polar vortex dynamics during winter 2006/2007, Polar Sci., 2020, vol. 25, p. 100532. https://doi.org/10.1016/j.polar.2020.100532

    Article  Google Scholar 

  42. Zuev, V.V. and Savelieva, E., Sensitivity of polar stratospheric clouds to the Arctic polar vortex weakening in the lower stratosphere in midwinter, Proc. SPIE: Int. Soc. Opt. Eng., 2021, vol. 11916, p. 1191674. https://doi.org/10.1117/12.2599025.

  43. Zuev V.V., Savelieva E.S., Pavlinsky A.V. Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009, Probl. Arkt. Antarkt., 2021, vol. 67, no. 2, pp. 134–146. https://doi.org/10.30758/0555-2648-2021-67-2-134-146

    Article  Google Scholar 

  44. Zuev, V.V., Savelieva, E.S., and Pavlinsky, A.V., Features of stratospheric polar vortex weakening prior to breakdown, Atmos. Oceanic Opt., 2022, vol. 35, no. 2, pp. 183–186. https://doi.org/10.1134/S1024856022020142

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-27-00002 (https://rscf.ru/project/22-27-00002/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Savelieva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, V.V., Savelieva, E.S. & Sidorovsky, E.A. Abnormally Long Absence of Polar Stratospheric Clouds in the Arctic in Midwinter According to Satellite Observations. Izv. Atmos. Ocean. Phys. 59, 1198–1207 (2023). https://doi.org/10.1134/S0001433823090232

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823090232

Keywords:

Navigation