Skip to main content
Log in

Forward and Backward Linkages between Land Surface Temperature and Leaf Area Index for the Summer in Belarus

  • USE OF SPACE INFORMATION ABOUT THE EARTH LAND USE RESEARCH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

On the basis of Earth remote sensing data for 2000–2020, quantitative estimates of the influence of vegetation cover degradation on the summer warming in Belarus have been obtained. The average leaf area index of Belarus for this period increased by 3.3%, mainly due to forest areas, the leaf index of which increased by about 8%. The growth of the leaf area index slowed down the summer warming of forest lands in the north (above 54° N) by about half and by more than a quarter in the south of Belarus. At the same time, the leaf area index of croplands decreased by about 5%, which caused their additional warming and amplified their land surface temperature daily cycle for the summer period. Statistically significant signs of bioclimatic land degradation have been found on the territory of Belarus with a total area of about 400 000 ha, which are enhanced by high values of positive feedback between temperature, vegetation cover, and soil moisture. About of 58% of the degrading lands are agricultural lands located mainly in the southern part of the country. On these lands, the summer temperature grows twice as fast as the average for Belarus, and the leaf index decreases at a rate of about 2% per year, which indicates the insufficiency of agriculture climate mitigation in certain regions of Belarus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M.P., and Frank, D.C., Twentieth century redistribution in climatic drivers of global tree growth, Sci. Adv., 2019, vol. 5, no. 1. https://doi.org/10.1126/sciadv.aat4313

  2. Burrell, A.L., Evans, J.P., and De Kauwe, M.G., Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification, Nat. Commun., 2020, vol. 11, no. 3853. https://doi.org/10.1038/s41467-020-17710-7

  3. Chen, C., Park, T., Wang, X., Piao, Sh., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, Ph., Fensholt, R., Bala, G., Zhu, Z., Nemani, R.R., and Myneni, R.B., China and India lead in greening of the world through land-use management, Nat. Sustain., 2019, vol. 2, no. 2, pp. 122–129. https://doi.org/10.1038/s41893-019-0220-7

    Article  Google Scholar 

  4. Davy, R., Esau, I., Chernokulsky, A., Outten, S., and Zilitinkevich, S., Diurnal asymmetry to the observed global warming, Int. J. Climatol., 2017, vol. 37, no. 1, pp. 79–93. https://doi.org/10.1002/joc.4688

    Article  Google Scholar 

  5. Duan, S.-B., Li, Z.-L., Li, H., Göttsche, Fr.-M., Wu, H., Leng, P., and Coll, C., Validation of collection 6 MODIS land surface temperature product using in situ measurements, Remote Sens. Environ., 2019, vol. 225, pp. 16–29. https://doi.org/10.1016/j.rse.2019.02.020

    Article  Google Scholar 

  6. Duffy, K.A., Schwalm, C.R., Arcus, V.L., Koch, G.W., Liang, L.L., and Schipper, L.A., How close are we to the temperature tipping point of the terrestrial biosphere?, Sci. Adv., 2021, vol. 7, no. 3. https://doi.org/10.1126/sciadv.aay1052

  7. Fang, H., Wang, Y., Zhang, Y., and Li, S., Long-term variation of global GEOV2 and MODIS Leaf Area Index (LAI) and their uncertainties: An insight into the product stabilities, J. Remote Sens., 2021, vol. 2021, no. 9842830. https://doi.org/10.34133/2021/9842830

  8. Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 2010, vol. 114, no. 1, pp. 168–182. https://doi.org/10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  9. Golyandina, N., Korobeynikov, A., Shlemov, A., and Usevich, K., Multivariate and 2D extensions of singular spectrum analysis with the RSSA package, J. Stat. Software, 2015, vol. 67, no. 2, pp. 1–78. https://doi.org/10.18637/jss.v067.i02

    Article  Google Scholar 

  10. Goovaerts, P., Geostatistics for Natural Resources Evaluation, New York: Oxford University Press, 1997.

    Book  Google Scholar 

  11. Gornyi, V.I., Kritsuk, S.G., Latypov, I.Sh., Manvelova, A.B., Tronin, A.A., Satellite mapping of the risk of urban air overheating (on the example of Helsinki, Finland), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2022, vol. 19, no. 3, pp. 23–34. https://doi.org/10.21046/2070-7401-2022-19-3-23-34

    Article  Google Scholar 

  12. Green, J.K., Konings, A.G., Alemohammad, S.H., Berry, J., Entekhabi, D., Kolassa, J., Lee, J.-E., and Gentine, P., Regionally strong feedbacks between the atmosphere and terrestrial biosphere, Nat. Geosci., 2017, vol. 10, no. 6, pp. 410–414. https://doi.org/10.1038/ngeo2957

    Article  Google Scholar 

  13. Heimann, M. and Reichstein, M., Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, 2008, vol. 451, no. 7176, pp. 289–292. https://doi.org/10.1038/nature06591

    Article  Google Scholar 

  14. Jiao, W., Wang, L., Smith, W.K., Chang, Q., Wang, H., and D’Odorico, P., Observed increasing water constraint on vegetation growth over the last three decades, Nat. Commun., 2021, vol. 12, no. 3777. https://doi.org/10.1038/s41467-021-24016-9

  15. Lesk, C., Coffel, E., Winter, J., Ray, D., Zscheischler, J., Seneviratne, S.I., and Horton, R., Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields, Nat. Food, 2021, vol. 2, no. 9, pp. 683–691. https://doi.org/10.1038/s43016-021-00341-6

    Article  Google Scholar 

  16. Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., Canadell, J.G., McCabe, M.F., Evans, J.P., and Wang, G., Recent reversal in loss of global terrestrial biomass, Nat. Clim. Change, 2015, vol. 5, no. 5, pp. 470–474. https://doi.org/10.1038/nclimate2581

    Article  Google Scholar 

  17. Liu, Y., Zhou, R., Wen, Z., Khalifa, M., Zheng, C., Ren, H., Zhang, Z., and Wang, Z., Assessing the impacts of drought on net primary productivity of global land biomes in different climate zones, Ecol. Indic., 2021, vol. 130, no. 108146. https://doi.org/10.1016/j.ecolind.2021.108146

  18. Loginov, V.F., Global’nye i regional’nye izmeneniya klimata: prichiny i sledstviya (Global and Regional Climate Change: Causes and Consequences), Minsk: TetraSistems, 2008.

  19. Loginov, V.F., Lysenko, S.A., and Melnik, V.I., Izmenenie klimata Belarusi: prichiny, posledstviya, vozmozhnosti regulirovaniya (Climate Change in Belarus: Causes, Consequences, and Regulatory Opportunities), Minsk: Entsiklopediks, 2020.

  20. Loginov, V.F., Lysenko, S.A., Khomich, V.S., Semenchenko, V.P., Kulak, A.V., and Stepanovich, I.M., Climate aridization signs and their ecosystem manifestations in Belarus, Izv. Ross. Akad. Nauk, Ser. Geogr., 2021, vol. 85, no. 4, pp. 515–527. https://doi.org/10.31857/S2587556621040063

    Article  Google Scholar 

  21. Lysenko, S.A., Climate-forced changes of bioproductivity of terrestrial ecosystems in Belarus, Izv., Atmos. Ocean. Phys., 2020a, vol. 56, no. 9, pp. 1080–1089. https://doi.org/10.1134/S0001433820090169

    Article  Google Scholar 

  22. Lysenko, S.A., Loginov, V.F., and Buyakov, I.V., Effect of large-scale modes of total variability of the atmosphere and ocean in the Atlantic–European region on the climate of Belarus, Dokl. Nats. Akad. Nauk Belarusi, 2020b, vol. 64, no. 5, pp. 609–616. https://doi.org/10.29235/1561-8323-2020-64-5-609-616

    Article  Google Scholar 

  23. Lysenko, S.A., Loginov, V.F., and Zaiko, P.O., Climate change impacts on bioproductivity of terrestrial ecosystems in the Belarusian–Ukrainian Polesie region, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 1, pp. 34–39. https://doi.org/10.3103/S1068373922010058

    Article  Google Scholar 

  24. Molchanov, A.A., Gidrologicheskaya rol’ lesa (The Hydrological Role of Forests), Moscow: AN SSSR, 1960.

  25. Natsional’nyi doklad “Global’nyi klimat i pochvennyi pokrov Rossii: opustynivanie i degradatsiya zemel’, institutsional’nye, infrastrukturnye, tekhnologicheskie mery adaptatsii (sel’skoe i lesnoe khozyaistvo)’’ (National Report “Global Climate and Soil Cover in Russia: Desertification and Land Degradation, Institutional, Infrastructural, and Technological Adaptation Measures (Agriculture and Forestry)”), Edel’geriev, R.-S.Kh., Ed., Moscow: MBA, 2019.

  26. Rakhmanov, V.V., Gidroklimaticheskaya rol' lesov (Hydroclimatic Role of Forests), Moscow: Lesnaya promyshlennost', 1984.

  27. Rasul, A., Ibrahim, S., Onojeghuo, A.R., and Balzter, H., A trend analysis of leaf area index and land surface temperature and their relationship from global to local scale, Land, 2020, vol. 9, no. 10, pp. 1–17. https://doi.org/10.3390/land9100388

    Article  Google Scholar 

  28. Shinkarenko, S.S., Kosheleva, O.Yu., Gordienko, O.A., Dubacheva, A.A., and Omarov, R.S., Analysis of the effect of sealed soil cover and landscaping on the temperature field of the Volgograd agglomeration according to MODIS data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2020, vol. 17, no. 5, pp. 125–141. https://doi.org/10.21046/2070-7401-2020-17-5-125-141

    Article  Google Scholar 

  29. Shinkarenko, S.S., Kosheleva, O.Yu., Gordienko, O.A., Dubacheva, A.A., and Omarov, R.S., The relationship between the seasonal dynamics of surface temperature and NDVI in urbanized areas of an arid zone. The case of the Volgograd agglomeration, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 11, pp. 1576–1585. https://doi.org/10.1134/S0001433821120197

    Article  Google Scholar 

  30. Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Portner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak M., et al., Intergovernmental Panel on Climate Change (IPCC): Summary for Policymakers, Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 2019.

    Google Scholar 

  31. Voronkov, N.A., Rol’ lesov v okhrane vod (The Role of Forests in Water Protection), Leningrad: Gidrometeoizdat, 1988.

  32. Xu, L., Myneni, R.B., Chapin, F.S. III, Callaghan, T.V., Pinzon, J.E., Tucker, C.J., Zhu, Z., Bi, J., Ciais, P., Tommervik, H., Euskirchen, E.S., Forbes, B.C., Piao, S.L., Anderson, B.T., Ganguly, S., et al., Temperature and vegetation seasonality diminishment over northern lands, Nat. Clim. Change, 2013, vol. 3, no. 6, pp. 581–586. https://doi.org/10.1038/nclimate1836

    Article  Google Scholar 

  33. Zhang, W., Wei, F., Horion, S., Fensholt, R., Forkel, M., and Brandt, M., Global quantification of the bidirectional dependency between soil moisture and vegetation productivity, Agric. For. Meteorol., 2022, vol. 313. https://doi.org/10.1016/j.agrformet.2021.108735

  34. Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., et al., Greening of the Earth and its drivers, Nat. Clim. Change, 2016, vol. 6, no. 6, pp. 791–795. https://doi.org/10.1038/nclimate3004

    Article  Google Scholar 

  35. Zolotokrylin, A.N., Klimaticheskoe opustynivanie (Climatic Desertification), Moscow: Nauka, 2003.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lysenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, S.A. Forward and Backward Linkages between Land Surface Temperature and Leaf Area Index for the Summer in Belarus. Izv. Atmos. Ocean. Phys. 59, 1137–1149 (2023). https://doi.org/10.1134/S000143382309013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382309013X

Keywords:

Navigation