Skip to main content
Log in

Gravitational repulsive effects in 3D regular black holes

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work, we consider the effects of repulsive gravity in an invariant way for four static 3D regular black holes, using the eigenvalues of the Riemann curvature tensor, the Ricci scalar, and the strong energy conditions. The eigenvalues of the solutions are non-vanishing asymptotically (in asymptotically AdS) and increase as the source of gravity is approached, providing a radius at which the passage from attractive to repulsive gravity might occur. We compute the onsets and the regions of repulsive gravity and conclude that the regular behavior of the solutions at the origin of coordinates can be interpreted as due to the presence of repulsive gravity, which also turns out to be related with the violation of the strong energy condition. We showed that in all of the solutions for the allowed region of parameters, gravity changes its sign, but the repulsive regions only for the non-logarithmic solution are affected by the mass that generates the regular black hole. The repulsive regions for the logarithmic solutions are dependent on electric charge and the AdS\(_{3}\) length. The implications and physical consequences of these results are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Interestingly, despite extensive investigations, no scenarios of gravitational collapse have conclusively confirmed the validity of the cosmic censorship hypothesis, which posits that singularities are always concealed from observation. Consequently, there remains the possibility that, under specific circumstances, naked singularities may emerge during the course of mass distribution collapsing gravitationally [13].

  2. Including local degrees of freedom makes the theory closer to its four-dimensional counterpart; this can be achieved by deforming the theory, giving a mass to the graviton [39, 41].

  3. In 3D flat spacetime, the only solution with the horizon is flat space cosmology [50, 51]. The other solutions are the kink-like solution with the gravitational field which is described by a conical space with its deficit angle corresponding to the mass of the particle. [40, 42].

  4. In this direction, one can find electrically charged black holes, dilatonic black holes, black holes arising in string theory, black holes in topologically massive gravity, and warped-AdS black holes [42,43,44,45,46,47,48,49].

  5. It should be noted that the logarithmic solutions can also be solutions of 3D gravity theories at the chiral point.

References

  1. Townsend, P.K.: [arXiv:gr-qc/9707012 [gr-qc]]

  2. Grumiller, D., Sheikh-Jabbari, M.M.: Springer, ISBN 978-3-031-10342-1, 978-3-031-10343-8 (2022)

  3. Abbott, B.P., et al.: LIGO Scientific and Virgo. Phys. Rev. Lett. 116(6), 061102 (2016)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  4. Abbott, B.P., et al.: LIGO Scientific and Virgo. Phys. Rev. Lett. 123(1), 011102 (2019)

    ADS  CAS  PubMed  Google Scholar 

  5. Abbott, B.P., et al.: LIGO Scientific and Virgo. Phys. Rev. D 100(10), 104036 (2019)

    ADS  CAS  Google Scholar 

  6. Abbott, B.P., et al.: LIGO Scientific, Virgo and IPN. Astrophys. J. 886, 75 (2019)

    ADS  CAS  Google Scholar 

  7. Akiyama, K., et al.: Event Horizon Telescope. Astrophys. J. Lett. 875, L1 (2019)

    ADS  CAS  Google Scholar 

  8. Akiyama, K., et al.: Event Horizon Telescope. Astrophys. J. Lett. 875(1), L2 (2019)

    ADS  CAS  Google Scholar 

  9. Penrose, R.: Phys. Rev. Lett. 14, 57–59 (1965). https://doi.org/10.1103/PhysRevLett.14.57

    Article  ADS  MathSciNet  Google Scholar 

  10. Hawking, S.: Proc. Roy. Soc. Lond. A 294, 511–521 (1966). https://doi.org/10.1098/rspa.1966.0221

    Article  ADS  Google Scholar 

  11. Hawking, S.W., Penrose, R.: Proc. Roy. Soc. Lond. A 314, 529–548 (1970). https://doi.org/10.1098/rspa.1970.0021

    Article  ADS  Google Scholar 

  12. Ellis, G.F.R., Schmidt, B.G.: Classification of singular space-times. Gen Relat Gravit 10, 989–997 (1979). https://doi.org/10.1007/BF00776518

    Article  ADS  MathSciNet  Google Scholar 

  13. Joshi, P.S.: Cambridge University Press, 2012, ISBN 978-1-107-40536-3, 978-0-521-87104-4, 978-0-511-37283-4. https://doi.org/10.1017/CBO9780511536274

  14. Penrose, R.: Riv. Nuovo Cim. 1, 252 (1969)

    ADS  Google Scholar 

  15. Wald, R.M.: Chicago Univ. Pr. (1984). https://doi.org/10.7208/Chicago/9780226870373.001.0001

    Article  ADS  Google Scholar 

  16. Luongo, O., Quevedo, H.: Phys. Rev. D 90(8), 084032 (2014)

    ADS  Google Scholar 

  17. Luongo, O., Quevedo, H.: [arXiv:2305.11185 [gr-qc]]

  18. Luongo, O., Quevedo, H.: Found. Phys. 48(1), 17–26 (2018). https://doi.org/10.1007/s10701-017-0125-0. [arXiv:1507.06446 [gr-qc]][arXiv:1507.06446 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  19. Born, M., Infeld, L.: Proc. Roy. Soc. Lond. A 144(852), 425–451 (1934). https://doi.org/10.1098/rspa.1934.0059

    Article  ADS  Google Scholar 

  20. Bardeen, J. M.: in Proceedings of International Conference GR5, Tbilisi, USSR, p. 174 (1968)

  21. Ayon-Beato, E., Garcia, A.: Phys. Lett. B 464, 25 (1999)

    ADS  MathSciNet  CAS  Google Scholar 

  22. Ayon-Beato, E., Garcia, A.: Phys. Rev. Lett. 80, 5056–5059 (1998)

    ADS  CAS  Google Scholar 

  23. Dymnikova, I.: Gen. Rel. Grav. 24, 235–242 (1992)

    ADS  Google Scholar 

  24. Dymnikova, I.: Class. Quant. Grav. 21, 4417–4429 (2004)

    ADS  Google Scholar 

  25. Novello, M., Perez Bergliaffa, S.E., Salim, J.: M.: Class. Quant. Grav. 17, 3821–3832 (2000)

    ADS  Google Scholar 

  26. Bronnikov, K.A.: Phys. Rev. D 63, 044005 (2001)

    ADS  MathSciNet  Google Scholar 

  27. Burinskii, A., Hildebrandt, S.R.: Phys. Rev. D 65, 104017 (2002)

    ADS  MathSciNet  Google Scholar 

  28. Sajadi, S. N., Riazi, N.: Gen. Rel. Grav. 49, no.3, 45 (2017) [erratum: Gen. Rel. Grav. 52, no.2, 18 (2020)]

  29. Hendi, S.H., Sajadi, S.N., Khademi, M.: Phys. Rev. D 103(6), 064016 (2021)

    ADS  CAS  Google Scholar 

  30. Torres, R.: [arXiv:2208.12713 [gr-qc]]

  31. Bronnikov, K. A.: [arXiv:2211.00743 [gr-qc]]

  32. Karakasis, T., Mavromatos, N.E., Papantonopoulos, E.: Phys. Rev. D 108(2), 024001 (2023)

    ADS  CAS  Google Scholar 

  33. Estrada, M., Aros, R.: Phys. Lett. B 844, 138090 (2023)

    CAS  Google Scholar 

  34. Kumar, A., Ghosh, S.G.: Nucl. Phys. B 987, 116089 (2023)

    CAS  Google Scholar 

  35. Contreras, E., Rincón, Á., Koch, B., Bargueño, P.: Int. J. Mod. Phys. D 27(03), 1850032 (2017)

    ADS  Google Scholar 

  36. Berej, W., Matyjasek, J., Tryniecki, D., Woronowicz, M.: Gen. Rel. Grav. 38, 885–906 (2006)

    ADS  Google Scholar 

  37. Elizalde, E., Hildebrandt, S.R.: Phys. Rev. D 65, 124024 (2002)

    ADS  MathSciNet  Google Scholar 

  38. Bronnikov, K.A.: Phys. Rev. Lett. 85, 4641 (2000)

    ADS  CAS  PubMed  Google Scholar 

  39. Deser, S., Jackiw, R., Templeton, S.: Phys. Rev. Lett. 48, 975–978 (1982)

    ADS  CAS  Google Scholar 

  40. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849–1851 (1992)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  41. Bergshoeff, E.A., Hohm, O., Townsend, P.K.: Phys. Rev. Lett. 102, 201301 (2009)

    ADS  MathSciNet  PubMed  Google Scholar 

  42. Carlip, S.: Class. Quant. Grav. 12, 2853–2880 (1995)

    ADS  MathSciNet  Google Scholar 

  43. Rincón, Á., Panotopoulos, G.: Phys. Rev. D 97(2), 024027 (2018)

    ADS  MathSciNet  Google Scholar 

  44. Panotopoulos, G., Rincón, A.: Phys. Rev. D 97(8), 085014 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  45. Podolsky, J., Svarc, R., Maeda, H.: Class. Quant. Grav. 36(1), 015009 (2019)

    ADS  CAS  Google Scholar 

  46. Sharif, M., Sadiq, S.: Chin. J. Phys. 60, 279–289 (2019)

    Google Scholar 

  47. Ali, A., Saifullah, K.: Eur. Phys. J. C 82(2), 131 (2022)

    ADS  CAS  Google Scholar 

  48. Priyadarshinee, S., Mahapatra, S.: [arXiv:2305.09172 [gr-qc]]

  49. Karakasis, T., Koutsoumbas, G., Papantonopoulos, E.: Phys. Rev. D 107(12), 124047 (2023)

    ADS  CAS  Google Scholar 

  50. Bagchi, A., Detournay, S., Grumiller, D., Simon, J.: Phys. Rev. Lett. 111(18), 181301 (2013)

    ADS  PubMed  Google Scholar 

  51. Setare, M.R., Sajadi, S.N.: Class. Quant. Grav. 38(14), 145009 (2021)

    ADS  CAS  Google Scholar 

  52. He, Y., Ma, M.S.: Phys. Lett. B 774, 229–234 (2017)

    ADS  CAS  Google Scholar 

  53. Bueno, P., Cano, P.A., Moreno, J., van der Velde, G.: Phys. Rev. D 104(2), L021501 (2021)

    ADS  CAS  Google Scholar 

  54. Estrada, M., Tello-Ortiz, F.: EPL 135(2), 20001 (2021). https://doi.org/10.1209/0295-5075/ac0ed0. [arXiv:2012.05068 [gr-qc]]

    Article  ADS  CAS  Google Scholar 

  55. Aros, R., Estrada, M.: Eur. Phys. J. C 79(3), 259 (2019)

    ADS  Google Scholar 

  56. Hendi, S. H., Hajkhalili, S., Mahmoudi, S.: [arXiv:2204.11558 [gr-qc]]

  57. Cataldo, M., Garcia, A.: Phys. Rev. D 61, 084003 (2000)

    ADS  Google Scholar 

  58. Nicolini, P.: [arXiv:2306.01480 [gr-qc]]

  59. Kumar, J., Islam, S.U., Ghosh, S.G.: Astrophys. J. 938(2), 104 (2022)

    ADS  Google Scholar 

  60. Banerjee, I., Sau, S., SenGupta, S.: [arXiv:2207.06034 [gr-qc]]

  61. Banerjee, I., Sau, S., SenGupta, S.: JCAP 09, 066 (2022)

    ADS  Google Scholar 

  62. Villani, M.: Class. Quant. Grav. 38(7), 075028 (2021)

    ADS  CAS  Google Scholar 

  63. Kumar, R., Ghosh, S.G.: Class. Quant. Grav. 38(8), 8 (2021)

    Google Scholar 

  64. Nam, C.H.: Gen. Rel. Grav. 53(3), 30 (2021)

    ADS  Google Scholar 

  65. Flachi, A., Lemos, J.P.S.: Phys. Rev. D 87(2), 024034 (2013)

    ADS  Google Scholar 

  66. Podolsky, J., Papajcik, M.: [arXiv:2310.10528 [gr-qc]]

  67. Quevedo, H.: Matching conditions in relativistic astrophysics. In The Twelfth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (World Scientific, Singapore, 2012)

  68. https://www.maplesoft.com/support/help/maple/view. aspx?path=RootOf

  69. https://www.maplesoft.com/support/help/maple/view. aspx?path=LambertW

Download references

Acknowledgements

The work of OL is partially financed by the Ministry of Education and Science of the Republic of Kazakhstan, Grant: IRN AP19680128. The work of HQ was partially supported by UNAM-DGAPA-PAPIIT, Grant No. 114520, and CONACYT-Mexico, Grant No. A1-S-31269.

Author information

Authors and Affiliations

Authors

Contributions

OL: Conceptualization, Writing an original draft, review and editing HQ: Conceptualization, Validation, review and editing SNS: Software, Writing an original draft, review and editing

Corresponding author

Correspondence to S. N. Sajadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luongo, O., Quevedo, H. & Sajadi, S.N. Gravitational repulsive effects in 3D regular black holes. Gen Relativ Gravit 56, 17 (2024). https://doi.org/10.1007/s10714-024-03207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03207-x

Keywords

Navigation