Skip to main content
Log in

Edible composite films: enhancing the postharvest preservation of blueberry

  • Review Article
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Blueberry is popular among consumers for their unique flavor and rich nutritional content. However, fresh blueberry often has a short shelf life due to microbial contamination and water loss. Existing blueberry preservation methods, such as irradiation, air conditioning, and high-voltage electrostatic fields, have shown certain effectiveness. Nonetheless, their high cost and energy consumption limit their widespread use. Edible composite films, created by incorporating functional substances into an edible film matrix, represent an eco-friendly preservation technology. These films alter the surface microenvironment of fruits by establishing a selective barrier on the fruit's surface, which significantly enhances fruit storage quality. This article provides a comprehensive review of the application of edible composite films in blueberry preservation. By summarizing the spoilage process of blueberry during harvesting and storage, in conjunction with fruit preservation techniques, it explores the feasibility and potential applications of edible composite films. Lastly, it delves into the possibilities and challenges of integrating nanomaterials with edible composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abugoch L, Tapia C, Plasencia D, Pastor A, Castro-Mandujano O, Lopez L, Escalona V (2015) Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J Sci Food Agric 96:619–626

    Article  PubMed  Google Scholar 

  • Al-Hilifi SA, Al-Ali RM, Petkoska AT (2022) Ginger essential oil as an active addition to composite chitosan films: development and characterization. Gels 8(6):327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Tayyar N, Youssef A, Al-hindi R (2020) Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: a review. Sustain Mater Technol 26:e00215

    CAS  Google Scholar 

  • An K, Fu M, Zhang H, Tang D, Xu Y, Xiao G (2019) Effect of ethyl oleate pretreatment on blueberry (Vaccinium corymbosum L.): drying kinetics, antioxidant activity, and structure of wax layer. J Food Sci Technol 56:783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K (2022) Application of nanotechnology in food packaging: pros and cons. J Agric Food Res 7:100270

    CAS  Google Scholar 

  • Bai X, Jiang A, Hu W, He Y, Feng K (2015) Isolation, identification and PCR detection of pathogenic bacteria on the surface of postharvest blueberry fruit. Food Ind Technol 36:297–300

    CAS  Google Scholar 

  • Barkai-golan R (2001) Introduction. In: Barkai-golan R (ed) Postharvest diseases of fruits and vegetables, vol 1. Elsevier, Amsterdam, pp 1–2

    Google Scholar 

  • Blaker KM, Olmstead J (2014) Effects of preharvest applications of 1-methylcyclopropene on fruit firmness in southern highbush blueberry. Acta Hort 1017:71–75

    Article  Google Scholar 

  • Bof J, Laurent F, Massolo J, Locaso D, Versino F, García M (2021) Bio-packaging material impact on blueberries quality attributes under transport and marketing conditions. Polymers 13:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Du X, Cui D, Wang X, Yang Z, Zhu G (2019) Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll 91:238–245

    Article  CAS  Google Scholar 

  • Cao S, Ma C, Long XB, Ji N, Yan XZ, Yang F, Ma LZ, Wang R (2017) Effect of 1-MCP coupling with ethylene adsorbent treatment on storage quality and physiological of blueberry. Sci Technol Food Ind 38:265–271

    Google Scholar 

  • Cao X, Zhang F, Zhao D, Zhu D, Li J (2018) Effects of freezing conditions on quality changes in blueberries. J Sci Food Agric 98:4673–4679

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu Y, Hongdi L, Kang L, Jinman G, Gai Y, Yunlong D, Sun H, Li Y (2015) Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS ONE 10:e0118578

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Ya G, Ye T, Xingzhuang W (2017) Influence of γ-irradiation on the reactive-oxygen metabolism of blueberry fruit during cold storage. Innov Food Sci Emerg Technol 41:397–403

    Article  Google Scholar 

  • Chiabrando V, Giacalone G (2011) Shelflife extension of highbush blueberry using 1-methylcyclopropene stored under air and controlled atmosphere. Food Chem Food Chem 126:1812–1816

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Gao H, Chen H, Fang X, Zheng Y (2017) Effects of cuticular wax on the postharvest quality of blueberry fruit. Food Chem 239:68–74

    Article  PubMed  Google Scholar 

  • Cline W, Milholland R (1996) Diseases of blueberry fruit at harvest in North Carolina. J Small Fruit Viticult 3:219–225

    Article  Google Scholar 

  • Dai Q, Li G, Yang H, Zhang G, Jiang S (2016) Pathogen identification and occurrence regularity of blueberry postharvest diseases. J Fruit Trees 33:1299–1306

    Google Scholar 

  • Debeaufort F, Voilley A (2009) Lipid-based edible films and coatings. Edible Film Coat Food Appl 135–168

  • Deng J, Shi Z, Li X, Liu H (2013) Effects of cold storage and 1-methylcyclopropene treatments on ripening and cell wall degrading in rabbiteye blueberry (Vaccinium ashei) fruit. Food Sci Technol Int Ciencia y Tecnologia De Los Alimentos Internacional 20:287–298

    Google Scholar 

  • Dhall RK (2016) Application of edible coatings on fruits and vegetables. In: Dhall RK (ed) Biobased and environmentally benign coatings. Wiley, New York, pp 87–119

    Chapter  Google Scholar 

  • Dong S, Xu F, Liu S, Zhao X, Wang S (2017) Effects of short-wave ultraviolet (UV-C) combined with ice temperature storage on postharvest freshness of blueberries. Northern Gard 47:142–144

    Google Scholar 

  • Duan Y, Tarafdar A, Chaurasia D, Singh A, Bhargava PC, Yang J, Li Z, Ni X, Tian Y, Li H (2022) Blueberry fruit valorization and valuable constituents: a review. Int J Food Microbiol 381:109890

    Article  CAS  PubMed  Google Scholar 

  • El-Agamy, S.Z.A., Sherman, W.B., & Lyrene, P.M., (1982). Pollen incompatibility in blueberries (Vaccinium spp.). Journal of Palynology, 18, 103-112

  • El-Akhal M, Colby T, Cantoral J, Harzen A, Schmidt J, Fernández-Acero F (2013) Proteomic analysis of conidia germination in Colletotrichum Acutatum. Arch Microbiol 195:227–246

    Article  CAS  PubMed  Google Scholar 

  • Elfar K, Torres R, Díaz G, Latorre B (2013) Characterization of diaporthe australafricana and Diaporthe spp. associated with stem canker of blueberry in Chile. Plant Dis 97:1042–1050

    Article  PubMed  Google Scholar 

  • Falagán N, Miclo T, Terry LA (2020) Graduated controlled atmosphere: a novel approach to increase “Duke” blueberry storage life. Front Plant Sci 11:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Falguera V, Quintero Cerón J, Jiménez A, Muñoz A, Ibarz A (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303

    Article  CAS  Google Scholar 

  • Fu X, Du Y, Zou L, Liu X, He Y, Xu Y, Li L, Luo Z (2022) Acidified glycerol as a one-step efficient green extraction and preservation strategy for anthocyanin from blueberry pomace: New insights into extraction and stability protection mechanism with molecular dynamic simulation. Food Chem 390:133226

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang S, Chen H, Chu W, Mu H, Ge L (2014) Epicuticular wax’s effect on fruit softening of blueberry. J Chin Inst Food Sci Technol 14:102–108

    CAS  Google Scholar 

  • Giacalone G, Chiabrando V (2012) Problems and methods to improve the market-life of berry fruit. In Berries: Consumption and Nutrition Problems and Methods to Improve the Market-Life of Berry Fruit, Nova Science Publishers Inc, pp. 179–196

  • Gu J, Xu J, Guo Y, Zong Y, Chen W, Guo W (2021) Cloning and functional analysis of ZIP transporters in blueberry. Sci Hortic 278:109871

    Article  CAS  Google Scholar 

  • Guo XY, Ding YD, Deng J, Liu HM, Ye WY, Liu P (2015) Separation and identification of pathogenic fungi in blueberry storage period. Northern Hortic 24:104–108

    Google Scholar 

  • Han JH (2014) Edible films and coatings: a review. In: Han JH (ed) Innovations in food packaging food science and technology, vol 9, 2nd edn. Academic Press, San Diego, pp 213–255

    Chapter  Google Scholar 

  • Harker FR, Feng J, Johnston JW, Gamble J, Alavi M, Hall M, Chheang SL (2019) Influence of postharvest water loss on apple quality: the use of a sensory panel to verify destructive and non-destructive instrumental measurements of texture. Postharvest Biol Technol 148:32–37

    Article  Google Scholar 

  • Hasan SMK, Ferrentino G, Scampicchio M (2019) Nanoemulsion as advanced edible coatings to preserve the quality of fresh-cut fruits and vegetables: a review. Int J Food Sci Technol 55:1–10

    Article  Google Scholar 

  • Hoffmann T, Londero da Silva D, Ronzoni A, Bertoli S, Krebs de Souza C (2021) Cooling kinetics and mass transfer in postharvest preservation of fresh fruits and vegetables under refrigerated conditions. Chem Eng Trans 87:115–120

    Google Scholar 

  • Huan C, An X, Yu M, Jiang L, Ma R, Tu M, Yu Z (2018) Effect of combined heat and 1-MCP treatment on the quality and antioxidant level of peach fruit during storage. Postharvest Biol Technol 145:193–202

    Article  CAS  Google Scholar 

  • Jagtiani E (2022) Advancements in nanotechnology for food science and industry. Food Front 3(1):56–82

    Article  Google Scholar 

  • Jaramillo C, Quintero C, Goyanes S, López-Córdoba A (2020) Improvement of Andean blueberries postharvest preservation using Carvacrol/Alginate-edible coatings. Polymers 12:2352

    Article  Google Scholar 

  • Ji SJ, Zhou Q, Ma C, Chang SC (2014) Effect of 1-MCP treatment on qualiy changes of blueberry at room temperature. Food Sci 35:322–327

    CAS  Google Scholar 

  • Ji Y, Hu W, Liao J, Jiang A, Xiu Z (2019) Research progress on postharvest physiology and pathology of blueberry and preservation technology. Food Ferment Ind 45:263–269

    Google Scholar 

  • Jiang J, Wei J, Yu H and He S (2019) The developing blueberry industry in China. In: Modern fruit industry Jiang J (Md.)

  • Jiang Y, Yu L, Zhu Z, Zhuang C, Zhao Y, Zhong Y (2019b) Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. Int J Biol Macromol 139:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W (2019) Application of edible coating with essential oil in food preservation. Crit Rev Food Sci Nutr 59:2467–2480

    Article  CAS  PubMed  Google Scholar 

  • Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC, Kolimi P, Nyavanandi D, Dyawanapelly S (2022) Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics 14(9):1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kou GS, Peters L, Mucalo M (2020) Chitosan: a review of sources and preparation methods. Int J Biol Macromol 169:85–94

    Article  PubMed  Google Scholar 

  • Kumar N (2019) Polysaccharide-based component and their relevance in edible film/coating: a review. Nutrit Food Sci 49(5):793–823

    Article  Google Scholar 

  • Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2005) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  • Kumar N, Petkoska AT, Al-Hilifi SA, Fawole OA (2021a) Effect of chitosan–pullulan composite edible coating functionalized with pomegranate peel extract on the shelf life of mango (Mangifera indica). Coatings 11(7):764

    Article  CAS  Google Scholar 

  • Kumar N, Pratibha TPA, Khojah E, Sami R, Al-Mushhin AA (2021b) Chitosan edible films enhanced with pomegranate peel extract: Study on physical, biological, thermal, and barrier properties. Materials 14(12):3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre B, Elfar K, Espinoza JRT, Díaz G (2012) First report of Diaporthe australafricana associated with stem canker on blueberry in Chile. Plant Dis 96:768

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Pei J, Sun H (2018) Status and prospect of global blueberry industry. J Jilin Agric Univ 40:421–432

    Google Scholar 

  • Li C, Tang J, Gong M, Li S, Zhang T, Liu M (2019a) Fresh-keeping effect of clove and licorice extract and chitosan quaternary ammonium compound coating on blueberry. Food Ind Technol 40:276–278

    Google Scholar 

  • Li J, Sun Q, Sun Y, Chen B, Wu X, Le T (2019b) Improvement of banana postharvest quality using a novel soybean protein isolate/cinnamaldehyde/zinc oxide bionanocomposite coating strategy. Sci Hortic 258:108786

    Article  CAS  Google Scholar 

  • Li Y, Pei J, Chen L, Sun H (2021) 2020 China blueberry industry annual report. J Jilin Agric Univ 43:1–8

    Google Scholar 

  • Lin M, Lasekan OO, Saari N, Bejo S (2017) The effect of the application of edible coatings on or before ultraviolet treatment on Postharvested Longan fruits. J Food Qual 2017:1–11

    Article  Google Scholar 

  • Liu K, Liu J, Li H, Yuan C, Zhong J, Chen Y (2016) Influence of postharvest citric acid and chitosan coating treatment on ripening attributes and expression of cell wall related genes in cherimoya (Annona cherimola Mill.) fruit. Sci Hortic 198:1–11

    Article  CAS  Google Scholar 

  • Liu C, Ding J, Huang P, Li H, Liu Y, Zhang Y, Hu X, Deng S, Liu Y, Qin W (2023) Use of heat-shock and edible coating to improve the postharvest preservation of blueberries. Foods 12:789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loredo Y, Soriano-Melgar LDA, Valencia L, Ramírez-García G, Jasso-Salcedo A (2023) Agriculture applications of biodegradable polymers. In: Loredo Y (ed) Biodegradable polymers. Elsevier, Amsterdam, pp 300–319

    Chapter  Google Scholar 

  • Mannozzi C, Tylewicz U, Chinnici F, Siroli L, Rocculi P, Dalla Rosa M, Romani S (2018) Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem 251:18–24

    Article  CAS  PubMed  Google Scholar 

  • Marelli B, Brenckle M, Kaplan D, Omenetto F (2016) Silk fibroin as edible coating for perishable food preservation. Sci Rep 6:25263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maringgal B, Hashim N, Tawakkal I, Mohamed M (2019) Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci Technol 96:253–267

    Article  Google Scholar 

  • Medina-Jaramillo C, Quintero-Pimiento C, Gómez-Hoyos C, Zuluaga-Gallego R, López-Córdoba A (2020) Alginate-edible coatings for application on wild Andean blueberries (Vaccinium meridionale Swartz): effect of the addition of nanofibrils isolated from cocoa by-products. Polymers 12:824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Jiang A, Hu W, Tian M, Liu C (2011) Effects of plastic box modified atmosphere storage on the physiological and biochemical changes of postharvest blueberry fruits. Sci Technol Food Ind 10:379–383

    Google Scholar 

  • Miles T, Wharton PS, Schilder AC (2009) Cytological and chemical evidence for an active resistance response to infection by Colletotrichum acutatum in ‘Elliott’ blueberries. Acta HortC 810:361–368

    Article  Google Scholar 

  • Miller W, Mcdonald R, Cracker T (1993) Quality of two florida blueberry cultivars after packaging and storage. HortScience 28:144–147

    Article  Google Scholar 

  • Mohamed S, El-Sakhawy M, Sakhawy M (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: a review. Carbohyd Polym 238:116178

    Article  CAS  Google Scholar 

  • Motamedi E, Nasiri J, Ranjbar Malidarreh T, Kalantari S, Naghavi MR, Safari M (2018) Performance of carnauba wax-nanoclay emulsion coatings on postharvest quality of ‘Valencia’ orange fruit. Sci Hortic 240:170–178

    Article  CAS  Google Scholar 

  • Nair S, Tomar M, Punia Bangar S, Kukula-Koch W, Kumar M (2020) Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: a review. Int J Biol Macromol 164:304–320

    Article  CAS  PubMed  Google Scholar 

  • Ni X, Yu J, Shao P, Yu J, Chen H, Gao H (2021) Preservation of Agaricus bisporus freshness with using innovative ethylene manipulating active packaging paper. Food Chem 345:128757

    Article  CAS  PubMed  Google Scholar 

  • Nunes S, Vieira P, Gomes P, Viana SD, Reis F (2021) Blueberry as an attractive functional fruit to prevent (pre) diabetes progression. Antioxidants 10(8):1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivas GII, Barbosa-Cánovas G (2009) Edible films and coatings for fruits and vegetables. In: Huber KC, Embuscado ME (eds) Edible films and coatings for food applications. Springer, New York, pp 211–244

    Chapter  Google Scholar 

  • Paniagua A, East A, Hindmarsh J, Heyes J (2013) Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biol Technol 79:13–19

    Article  Google Scholar 

  • Petkoska AT, Daniloski D, D’Cunha NM, Naumovski N, Broach AT (2021) Edible packaging: sustainable solutions and novel trends in food packaging. Food Res Int 140:109981

    Article  Google Scholar 

  • Polashock JJ, Caruso FL, Averill AL, Schilder AC (2017) Compendium of blueberry, cranberry, and lingonberry diseases and pests. No. Ed. 2. American Phytopathological Society. APS Press

  • Primožič M, Knez Ž, Leitgeb M (2021) (Bio) nanotechnology in food science—food packaging. Nanomaterials 11(2):292

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi X, Ogden E, Die J, Ehlenfeldt M, Polashock J, Darwish O, Alkharouf N, Rowland L (2019) Transcriptome analysis identifies genes related to the waxy coating on blueberry fruit in two northern-adapted rabbiteye breeding populations. BMC Plant Biol 19:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos Bell S, Hernandez-Montiel LG, González Estrada R, Gutierrez-Martinez P (2021) Main diseases in postharvest blueberries, conventional and eco-friendly control methods: a review. LWT Food Sci Technol 149:112046

    Article  Google Scholar 

  • Ramos M, Mellinas C, Solaberrieta I, Garrigós M, Jimenez A (2021) Emulsions incorporated in polysaccharide-based active coatings for fresh and minimally processed vegetables. Foods 10:665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzi M, Törün İ, Er F, Onses MS (2019) Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Prog Org Coat 136:105279

    Article  Google Scholar 

  • Saito S, Michailides T, Xiao C-L (2016) Fungicide resistance profiling in botrytis cinerea populations from blueberry in California and Washington and their impact on control of Gray Mold. Plant Dis 100:2087–2093

    Article  CAS  PubMed  Google Scholar 

  • Santiago LG, Castro GR (2016) Novel technologies for the encapsulation of bioactive food compounds. Curr Opin Food Sci 7:78–85

    Article  Google Scholar 

  • Sharaf Eddin A, Ibrahim S, Tahergorabi R (2019) Egg quality and safety with an overview of edible coating application for egg preservation. Food Chem 296:29–39

    Article  CAS  PubMed  Google Scholar 

  • Si Q, Hu W, Jang A, Ma X, Wang Q (2017) Effects of dynamic controlled atmosphere storage on postharvest physiological and metabolic quality of blueberries. Packag Eng 38:13–18

    CAS  Google Scholar 

  • Sommer NF (2012) Role of controlled environments in suppression of postharvest diseases. Can J Plant Pathol 7(3):331–339

    Article  Google Scholar 

  • Song H, Zhou X (2016) Contrast experimental study on blueberry wax film preservation. Modern Garden 12:10–11

    Google Scholar 

  • Sultan M, Hafez MO, Saleh AM, Youssef MA (2021) Smart edible coating films based on chitosan and beeswax–pollen grains for the postharvest preservation of Le Conte pear. RSC Adv 11:9572–9585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G,(2003). Experimental study on long-term storage and preservation of fresh blueberries in high-voltage electrostatic field. Agricultural Mechanization Research 1:121-123

  • Tahir HE, Xiaobo Z, Mahunu G, Arslan M, Abdalhai M, Zhihua L (2019a) Recent developments in gum edible coating applications for fruits and vegetables preservation: a review. Carbohyd Polym 224:115141

    Article  CAS  Google Scholar 

  • Tahir HE, Zhihua L, Mahunu G, Xiaobo Z, Arslan M, Xiaowei H, Yang Z, Mariod A (2019b) Effect of gum arabic edible coating incorporated with African baobab pulp extract on postharvest quality of cold stored blueberries. Food Sci Biotechnol 29:217–226

    Article  PubMed  PubMed Central  Google Scholar 

  • Tauferova A, Pospiech M, Javůrková Z, Tremlová B, Dordević D, Dordevic Jancikova S, Těšíková K, Zdarsky M, Vitez T, Vítězová M (2021) Plant byproducts as part of edible coatings: a case study with parsley. Grape Blueberry Pomace Polym 13:2578

    CAS  Google Scholar 

  • Temitayo O, Tesfay S, Ngobese N (2022) Nanotechnology-enhanced edible coating application on climacteric fruits. Food Sci Nutr 10:2149–2167

    Article  Google Scholar 

  • Thompson A (1990) A colour atlas of postharvest diseases and disorders of fruit and vegetables. Volume 1: general introduction and fruits. By Anna L. Snowdon. London: Wolfe Publishing (1989), pp 302, £48.00. Experimental Agriculture-EXP AGR. 26

  • Travica N, D’Cunha N, Naumovski N, Kent K, Mellor D, Firth J, Georgousopoulou E, Dean O, Loughman A, Jacka F, Marx W (2019) The effect of blueberry interventions on cognitive performance and mood: a systematic review of randomized controlled trials. Brain Behav Immun 85:96–105

    Article  PubMed  Google Scholar 

  • Wang C, Meng X (2016) Effect of 60Co γ-irradiation on storage quality and cell wall ultra-structure of blueberry fruit during cold storage. Innov Food Sci Emerg Technol 38:91–97

    Article  CAS  Google Scholar 

  • Wang D-F, Zhang Y-M, Xu Y, Meng X-H (2014) Effect of chitosan complex coatting treatment on fresh-keeping of blueberry fruit. Modern Food Sci Technol 30:62–65

    CAS  Google Scholar 

  • Wang Y, Gao J, Zhang X, Wang H, Yang S (2015) Effects of 1-MCP treatment on blueberry cold storage. Food Res Dev 36:132–136

    Google Scholar 

  • Wang S, Zhou X, Wei B, Ji S (2018) The effect of ethylene absorbent treatment on the softening of blueberry fruit. Food Chem 246:286–294

    Article  CAS  PubMed  Google Scholar 

  • Webb MD, Barker GC, Goodburn KE, Peck MW (2019) Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 93:94–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Hua L, Wan J (2012) Experimental Study on Ice-temperature Storage of Blueberries. Food Ind Technol 33(13):346–348

    CAS  Google Scholar 

  • Xu Q (2014) Effects of carvacrol on postharvest disease inhibition and storage quality of blueberry. Nanjing Agricultural College, Beijing

    Google Scholar 

  • Xu J, Fang Y, Tavakkoli E, Pan X, Liao F, Chen W, Guo W (2021) Preferential ammonium: nitrate ratio of blueberry isregulated by nitrogen transport and reduction systems. Sci Hortic 288:110345

    Article  CAS  Google Scholar 

  • Xue L, Yu JN, Lu XX, Chen SH (2015) Effect of out-store modes on quality on ice-temperature storage blueberries during shelf-life period. Sci Technol Food Ind 12:328–331

    Google Scholar 

  • Xue Y, Yuan X, Zhang P, Jia X, Li C, Li J (2021) Effect of precise temperature control on low-temperature preservation of blueberries. Modern Food Sci Technology 37(2021):185–194

    CAS  Google Scholar 

  • Yan J (2019) Regulation of strawberry metabolites by layer-by-layer self-assembled edible film. Zhejiang University, Beijing

    Google Scholar 

  • Yb B, Kola M (2019) Influence of composite edible coating systems on preservation of fresh meat cuts and products: A brief review on their trends and applications. Int Food Res J 26:377–392

    Google Scholar 

  • Yu Y (2015) Preparation of bioactive film and its fresh-keeping effect on blueberry and sweet cherry. Ocean University of China, Beijing

    Google Scholar 

  • Yu G, Luan Y, An L (2013) Effects of UV-C treatment on fresh-keeping and storage quality of blueberry. Food Res Dev 34:92–95

    Google Scholar 

  • Yu JN, Xue L, Lu XX (2014) Effect of cold acclimation on quality of blueberry fruits during ice-temperature storage. Food Sci 35:265–269

    CAS  Google Scholar 

  • Yu Y, Xu Y, Wang D, Zhang D, Yu J (2016) Effects of bioactive membrane combined with methyl jasmonate on the postharvest preservation of blueberries. Storage Process 16:16–20

    Google Scholar 

  • Zhang Y (2017) Effect of konjac glucomannan composite coating on blueberry fresh-keeping effect. Jiangsu Agric Sci 45:146–149

    Google Scholar 

  • Zhang J, Lazarenko O, Blackburn M, Badger T, Ronis M, Chen J-R (2012) Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells. Age (dordr) 35:807–820

    Article  PubMed  Google Scholar 

  • Zhang J, Lazarenko O, Blackburn M, Badger T, Ronis M, Chen J-R (2014) Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways. FASEB J off Publ Fed Am Soc Exp Biol 28:3134–3145

    CAS  Google Scholar 

  • Zhang H, Li Q, Xu Q, Lu S, Xiao J (2017) Effects of ultraviolet rays and plastic wrap on blueberry refrigeration and preservation. Food Ind Technol 38:314–318

    Google Scholar 

  • Zhang R, Wang X, Li L, Cheng M, Zhang L (2018) Optimization of konjac glucomannan/carrageenan/nano-SiO2 coatings for extending the shelf-life of Agaricus bisporus. Int J Biol Macromol 122:857–865

    Article  PubMed  Google Scholar 

  • Zhang Q, Cu L, Zhen Q, Wu Z, Ding Y, Qin Y, Zhang J, He M, Chen J, (2019) Fresh-keeping effect of cellulose composite antibacterial plastic wrap on postharvest blueberries. Food Ind Technol 19

  • Zhao Y, An J, Su H, Li B, Liang D, Huang C (2022) Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: a sustainable path. Food Res Int 155:111096

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Wang C, Wang S, Zheng W (2003) Effect of High-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity. J Agric Food Chem 51:7162–7169

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Meng F, Huang D, Chen X, Li G, Li Y, Lin M (2016) Research advances on technologies for postharvest storage and preservation of blueberry. J Food Saf Qual 7:3560–3565

    Google Scholar 

  • Zhong L, Zeng Q, Luo XN, He W, Yu JQ, Liu J (2019) Effect of stearic acid on freshness preservation performance of polyvinyl alcohol film fruit packaging. Packag Eng 40:67–73

    CAS  Google Scholar 

  • Zhou X, Wang R, Lei J, Liu X, Yang P (2015) Isolation and biological identification of postharvest pathogenic fungi in blueberries. Food Technol 40:283–288

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jilin Province 2024 Annual Talent Special Program—Outstanding Talents (Teams) in Science and Technology Innovation and Entrepreneurship for the Middle-aged and Young: 'Research and Development Team for Key Technologies in Blueberry Production.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KS; methodology, BZ and PZ; investigation, XW and PL; writing—original draft preparation, DS All authors have read and agreed to the published version of the manuscript. We insist that no author be omitted.

Corresponding author

Correspondence to Kai Song.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Zhao, B., Zhang, P. et al. Edible composite films: enhancing the postharvest preservation of blueberry. Hortic. Environ. Biotechnol. (2024). https://doi.org/10.1007/s13580-023-00581-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13580-023-00581-4

Keywords

Navigation