Skip to main content
Log in

Cyclic-acyclic monomers metathesis polymerization to access photodegradable polydicyclopentadiene and polyethylene-like materials

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of degradable and recyclable polymers is an attractive strategy to tackle the post-consumption pollution issue of commercial plastics. Cyclic-acyclic monomers metathesis polymerization (CAMMP) has been recently reported to produce degradable thermoset, thermoplastic and elastomeric polymers, and their degradability is enabled with addition of various chemicals. In this contribution, we demonstrate that the utilization of diene comonomers containing photodegradable moiety can give access to thermoset and thermoplastic materials bearing photo-degradation capabilities The copolymerization of a series easily accessible diene comonomers bearing photodegradable ortho-nitrobenzyl moieties with dicyclopentadiene (DCPD) or cyclooctene (COE) leads to the formation of photodegradable pDCPD thermosets and pCOE thermoplastic polymers with mechanical properties comparable to their non-degradable counterparts. Most importantly, their photo-degradation properties can be efficiently tuned with the addition of ultraviolet absorber during in-situ polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, Murphy E, Jambeck J, Leonard GH, Hilleary MA, Eriksen M, Possingham HP, De Frond H, Gerber LR, Polidoro B, Tahir A, Bernard M, Mallos N, Barnes M, Rochman CM. Science, 2020, 369: 1515–1518

    Article  CAS  PubMed  Google Scholar 

  2. Stürzel M, Mihan S, Mülhaupt R. Chem Rev, 2016, 116: 1398–1433

    Article  PubMed  Google Scholar 

  3. Sun H, Kabb CP, Sims MB, Sumerlin BS. Prog Polym Sci, 2019, 89: 61–75

    Article  CAS  Google Scholar 

  4. Geyer R, Jambeck JR, Law KL. Sci Adv, 2017, 3: e1700782

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mu H, Zhou G, Hu X, Jian Z. Coord Chem Rev, 2021, 435: 213802

    Article  CAS  Google Scholar 

  6. MacLeod M, Arp HPH, Tekman MB, Jahnke A. Science, 2021, 373: 61–65

    Article  CAS  PubMed  Google Scholar 

  7. Law KL, Narayan R. Nat Rev Mater, 2022, 7: 104–116

    Article  CAS  Google Scholar 

  8. Adili A, Korpusik AB, Seidel D, Sumerlin BS. Angew Chem Int Ed, 2022, 61: e202209085

    Article  CAS  Google Scholar 

  9. Garrison JB, Hughes RW, Sumerlin BS. ACS Macro Lett, 2022, 11: 441–446

    Article  CAS  PubMed  Google Scholar 

  10. Garrison JB, Hughes RW, Young JB, Sumerlin BS. Polym Chem, 2022, 13: 982–988

    Article  CAS  Google Scholar 

  11. Abel BA, Snyder RL, Coates GW. Science, 2021, 373: 783–789

    Article  CAS  PubMed  Google Scholar 

  12. Jehanno C, Alty JW, Roosen M, De Meester S, Dove AP, Chen EYX, Leibfarth FA, Sardon H. Nature, 2022, 603: 803–814

    Article  CAS  PubMed  Google Scholar 

  13. Yan YT, Wu G, Chen SC, Wang YZ. Sci China Chem, 2022, 65: 943–953

    Article  CAS  Google Scholar 

  14. Häußler M, Eck M, Rothauer D, Mecking S. Nature, 2021, 590: 423–427

    Article  PubMed  Google Scholar 

  15. Eck M, Schwab ST, Nelson TF, Wurst K, Iberl S, Schleheck D, Link C, Battagliarin G, Mecking S. Angew Chem Int Ed, 2023, 62: e202213438

    Article  CAS  Google Scholar 

  16. Li C, Guo C, Fitzpatrick V, Ibrahim A, Zwierstra MJ, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Nat Rev Mater, 2020, 5: 61–81

    Article  Google Scholar 

  17. Tang X, Westlie AH, Caporaso L, Cavallo L, Falivene L, Chen EY. Angew Chem Int Ed, 2020, 59: 7881–7890

    Article  CAS  Google Scholar 

  18. Clarke RW, Sandmeier T, Franklin KA, Reich D, Zhang X, Vengallur N, Patra TK, Tannenbaum RJ, Adhikari S, Kumar SK, Rovis T, Chen EYX. Nature, 2023, 616: 731–739

    Article  CAS  PubMed  Google Scholar 

  19. Shieh P, Zhang W, Husted KEL, Kristufek SL, Xiong B, Lundberg DJ, Lem J, Veysset D, Sun Y, Nelson KA, Plata DL, Johnson JA. Nature, 2020, 583: 542–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Fang Z, Zheng N, Yang K, Sun Z, Li S, Li W, Wu J, Xie T. Nat Chem, 2023, 15: 1773–1779

    Article  CAS  PubMed  Google Scholar 

  21. Xiong W, Lu H. Sci China Chem, 2023, 66: 725–738

    Article  CAS  Google Scholar 

  22. Bhatkhande DS, Pangarkar VG, Beenackers AACM. J Chem Tech Biotech, 2002, 77: 102–116

    Article  CAS  Google Scholar 

  23. Feng X, Yu Z, Sun Y, Long R, Shan M, Li X, Liu Y, Liu J. Ceramics Int, 2021, 47: 7321–7343

    Article  CAS  Google Scholar 

  24. Nasir AM, Awang N, Jaafar J, Ismail AF, Othman MHD, A. Rahman M, Aziz F, Mat Yajid MA. J Water Process Eng, 2021, 40: 101878

    Article  Google Scholar 

  25. Zhang M, Yang Y, An X, Hou L. Chem Eng J, 2021, 412: 128663

    Article  CAS  Google Scholar 

  26. Oh XY, Nguyen TM, Ye E, Luo HK, Singh PND, Loh XJ, Truong VX. ACS Macro Lett, 2023, 12: 690–696

    Article  CAS  PubMed  Google Scholar 

  27. Koo B, Kim D, Song DY, Han WJ, Kim D, Park JW, Kim M, Kim C. Polym Chem, 2022, 13: 6268–6273

    Article  CAS  Google Scholar 

  28. Yuan P, Sun Y, Xu X, Luo Y, Hong M. Nat Chem, 2022, 14: 294–303

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Guo W, Zhang C, Zhang X. Nat Commun, 2023, 14: 5423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang HY, Xiong W, Huang YT, Li K, Cai Z, Zhu JB. Nat Catal, 2023, 6: 720–728

    Article  CAS  Google Scholar 

  31. Liu J, Ren W, Lu X. Sci China Chem, 2015, 58: 999–1004

    Article  CAS  Google Scholar 

  32. Li XL, Clarke RW, Jiang JY, Xu TQ, Chen EYX. Nat Chem, 2023, 15: 278–285

    Article  CAS  PubMed  Google Scholar 

  33. Lidston CAL, Abel BA, Coates GW. J Am Chem Soc, 2020, 142: 20161–20169

    Article  CAS  PubMed  Google Scholar 

  34. Eck M, Bernabeu L, Mecking S. ACS Sustain Chem Eng, 2023, 11: 4523–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arrington AS, Brown JR, Win MS, Winey KI, Long TE. Polym Chem, 2022, 13: 3116–3125

    Article  CAS  Google Scholar 

  36. Si G, Tan C, Chen M, Chen C. Angew Chem Int Ed, 2022, 61: e202203796

    Article  CAS  Google Scholar 

  37. Parke SM, Lopez JC, Cui S, LaPointe AM, Coates GW. Angew Chem Int Ed, 2023, 62: e202301927

    Article  CAS  Google Scholar 

  38. Kocen AL, Cui S, Lin TW, LaPointe AM, Coates GW. J Am Chem Soc, 2022, 144: 12613–12618

    Article  CAS  PubMed  Google Scholar 

  39. Pearce AK, Foster JC, O’Reilly RK. J Polym Sci PartA-Polym Chem, 2019, 57: 1621–1634

    Article  CAS  Google Scholar 

  40. Neary WJ, Isais TA, Kennemur JG. J Am Chem Soc, 2019, 141: 14220–14229

    Article  CAS  PubMed  Google Scholar 

  41. Bachmann J, Petit C, Michalek L, Catel Y, Blasco E, Blinco JP, Unterreiner AN, Barner-Kowollik C. ACS Macro Lett, 2021, 10: 447–452

    Article  CAS  PubMed  Google Scholar 

  42. Bai J, Wang Y, You W. Sci China Chem, 2022, 65: 2182–2187

    Article  CAS  Google Scholar 

  43. Feist JD, Lee DC, Xia Y. Nat Chem, 2022, 14: 53–58

    Article  CAS  PubMed  Google Scholar 

  44. Feist JD, Xia Y. J Am Chem Soc, 2020, 142: 1186–1189

    Article  CAS  PubMed  Google Scholar 

  45. Elling BR, Su JK, Xia Y. ACS Macro Lett, 2020, 9: 180–184

    Article  CAS  PubMed  Google Scholar 

  46. Sathe D, Zhou J, Chen H, Su HW, Xie W, Hsu TG, Schrage BR, Smith T, Ziegler CJ, Wang J. Nat Chem, 2021, 13: 743–750

    Article  CAS  PubMed  Google Scholar 

  47. Zhou J, Sathe D, Wang J. J Am Chem Soc, 2022, 144: 928–934

    Article  CAS  PubMed  Google Scholar 

  48. Sample CS, Kellstedt EA, Hillmyer MA. ACS Macro Lett, 2022, 11: 608–614

    Article  CAS  PubMed  Google Scholar 

  49. Shieh P, Nguyen HVT, Johnson JA. Nat Chem, 2019, 11: 1124–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Husted KEL, Shieh P, Lundberg DJ, Kristufek SL, Johnson JA. ACS Macro Lett, 2021, 10: 805–810

    Article  CAS  PubMed  Google Scholar 

  51. Si G, Chen C. Nat Synth, 2022, 1: 956–966

    Article  Google Scholar 

  52. Deng X, Zheng N, Song Z, Yin L, Cheng J. Biomaterials, 2014, 35: 5006–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Q, Min Z, Wong YD, Li M, Huang W. JAppl Polym Sci, 2023, 140: e53913

    CAS  Google Scholar 

  54. Liu L, Liu L, Liu Z, Yang C, Pan B, Li W. Materials, 2022, 15: 8110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1501700), the National Natural Science Foundation of China (52025031, 22261142664, 22301294), China Postdoctoral Science Foundation (BX20230339, 2023M743352), the CAS Project for Young Scientists in Basic Research (YSBR-094), and Anhui Province Key Research and Development Plan Project (2022j11020004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yougui Li, Guifu Si or Changle Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liao, D., Li, Y. et al. Cyclic-acyclic monomers metathesis polymerization to access photodegradable polydicyclopentadiene and polyethylene-like materials. Sci. China Chem. 67, 1311–1315 (2024). https://doi.org/10.1007/s11426-023-1883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1883-4

Navigation