Skip to main content
Log in

A pseudoclassical theory for the wavepacket dynamics of the kicked rotor model

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this study, we propose a generalized pseudoclassical theory for the kicked rotor model in an attempt to discern the footprints of the classical dynamics in the deep quantum regime. Compared with the previous pseudoclassical theory that applies only in the neighborhoods of the lowest two quantum resonances, the proposed theory is applicable in the neighborhoods of all quantum resonances in principle by considering the quantum effect of the free rotation at a quantum resonance. In particular, it is confirmed by simulations that the quantum wavepacket dynamics can be successfully forecasted based on the generalized pseudoclassical dynamics, offering an intriguing example where it is feasible to bridge the dynamics in the deep quantum regime to the classical dynamics. The application of the generalized pseudoclassical theory to the \({\cal P}{\cal T}\)-symmetric kicked rotor is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Berry, Phys. Scr. 40, 335 (1989).

    Article  ADS  CAS  Google Scholar 

  2. F. Haake, S. Gnutzmann, and M. Kus, Quantum Signatures of Chaos, 4th ed. (Springer, Berlin, 2018).

    Book  Google Scholar 

  3. S. Fishman, I. Guarneri, and L. Rebuzzini, Phys. Rev. Lett. 89, 084101 (2002), arXiv: nlin/0205006.

    Article  ADS  PubMed  Google Scholar 

  4. S. Fishman, I. Guarneri, and L. Rebuzzini, J. Statist. Phys. 110, 911 (2003).

    Article  MathSciNet  CAS  Google Scholar 

  5. G. Casati, B. V. Chirikov, F. M. Izraelev, and J. Ford, Lect. Notes Phys. 93, 334 (1979).

    Article  ADS  Google Scholar 

  6. G. Casati, and B. V. Chirikov, Quantum Chaos: Between Order and Disorder (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  7. F. M. Izrailev, and D. L. Shepelyanskii, Theor. Math. Phys. 43, 553 (1980).

    Article  Google Scholar 

  8. L. Rebuzzini, I. Guarneri, and R. Artuso, Phys. Rev. A 79, 033614 (2009), arXiv: 0811.1156.

    Article  ADS  Google Scholar 

  9. H. Wang, J. Wang, I. Guarneri, G. Casati, and J. Gong, Phys. Rev. E 88, 052919 (2013), arXiv: 1308.3527.

    Article  ADS  Google Scholar 

  10. Z. Zou, and J. Wang, Entropy 24, 1092 (2022), arXiv: 2209.01364.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. F. Haake, M. Kus’, and R. Scharf, Z. Physik B-Condensed Matter 65, 381 (1987).

    Article  ADS  Google Scholar 

  12. F. Haake, and D. L. Shepelyansky, Europhys. Lett. 5, 671 (1988).

    Article  ADS  Google Scholar 

  13. I. Dana, E. Eisenberg, and N. Shnerb, Phys. Rev. E 54, 5948 (1996), arXiv: cond-mat/9608058.

    Article  ADS  CAS  Google Scholar 

  14. B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi Sums (Wiley, New York, 1998).

    Google Scholar 

  15. K. Takahashi, and N. Saitn, Phys. Rev. Lett. 55, 645 (1985).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  16. F. M. Izrailev, Phys. Rep. 196, 299 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  17. C. M. Bender, and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998), arXiv: physics/9712001.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. S. Longhi, Phys. Rev. A 95, 012125 (2017), arXiv: 1610.06007.

    Article  ADS  MathSciNet  Google Scholar 

  19. W. L. Zhao, J. Wang, X. Wang, and P. Tong, Phys. Rev. E 99, 042201 (2019), arXiv: 1901.01699.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. E. M. Graefe, M. Honing, and H. J. Korsch, J. Phys. A-Math. Theor. 43, 075306 (2010).

    Article  ADS  Google Scholar 

  21. C. T. West, T. Kottos, and T. Prosen, Phys. Rev. Lett. 104, 054102 (2010), arXiv: 1002.3635.

    Article  ADS  PubMed  Google Scholar 

  22. C. M. Bender, J. Phys.-Conf. Ser. 631, 012002 (2015).

    Article  Google Scholar 

  23. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Nat. Phys. 14, 11 (2018).

    Article  CAS  Google Scholar 

  24. J. C. Garreau, C. R. Phys. 18, 31 (2017), arXiv: 1608.03702.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12075198, 12247106, and 12247101).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Wang, J. A pseudoclassical theory for the wavepacket dynamics of the kicked rotor model. Sci. China Phys. Mech. Astron. 67, 230511 (2024). https://doi.org/10.1007/s11433-023-2279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2279-6

Navigation