Skip to main content
Log in

Illuminating dot-satellite motion around the natural moons of planets using the concept of ER3BP with variable eccentricity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the current study, we explore stability of satellite motion around the natural moons of planets in solar system using the novel concept of ER3BP with variable eccentricity. This concept was introduced earlier when novel type of ER3BP (Sun–planet–satellite) was investigated with variable spin state of secondary planet correlated implicitly to the satellite motion (in the synodic co-rotating Cartesian coordinate system) for its trapped orbit near the secondary planet (which is involved in Kepler’s duet “Sun–planet”). However, it is of real interest to explore another kind of aforedescribed problem, ER3BP (planet–moon–satellite) with respect to investigation of satellite motion m around the natural moon mmoon of planet with variable eccentricity of the moon in its motion around the planet. Therefore, we consider here two primaries, Mplanet and mmoon, the latter orbiting around their common barycenter on quasi-elliptic orbit with slow-changing, not constant eccentricity (on a large-time scale) due to tidal phenomena. Our aim is to investigate the motion of a small dot satellite around the natural moon of planet on quasi-stable elliptic orbit. Both novel theoretical and numerical findings (for various cases of trio “planet–moon–satellite”) are presented in the current research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cabral, F., Gil, P.: On the stability of quasi-satellite orbits in the elliptic restricted three-body problem. Master Thesis at the Universidade Técnica de Lisboa, Lisbon (2011)

    Google Scholar 

  2. Arnold, V.: Mathematical methods of classical mechanics. Springer, New York (1978)

    Book  Google Scholar 

  3. Duboshin, G.N.: Nebesnaja mehanika. Osnovnye zadachi i metody. Nauka (handbook for Celestial Mechanics in Russian), Moscow (1968)

    Google Scholar 

  4. Szebehely, V.: Theory of orbits. The restricted problem of three bodies. Yale University, Academic Press, New Haven, Connecticut, New-York, London (1967)

    Google Scholar 

  5. Abouelmagd, E.I., Pal, A.K., Guirao, J.L.: Analysis of nominal halo orbits in the Sun–Earth system. Arch. Appl. Mech. 91(12), 4751–4763 (2021)

    Article  ADS  Google Scholar 

  6. Ferrari, F., Lavagna, M.: Periodic motion around libration points in the elliptic restricted three-body problem. Nonlinear Dyn. 93(2), 453–462 (2018)

    Article  Google Scholar 

  7. Llibre, J., Conxita, P.: On the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 48(4), 319–345 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ershkov, S., Abouelmagd, E., Rachinskaya,: A novel type of ER3BP introduced for hierarchical configuration with variable angular momentum of secondary planet. Arch. Appl. Mech. 91(11), 4599–4607 (2021)

    Article  ADS  Google Scholar 

  9. Ershkov, S., Rachinskaya, A.: Semi-analytical solution for the trapped orbits of satellite near the planet in ER3BP. Arch. Appl. Mech. 91(4), 1407–1422 (2021)

    Article  ADS  Google Scholar 

  10. Ershkov, S., Leshchenko, D., Rachinskaya, A.: Note on the trapped motion in ER3BP at the vicinity of barycenter. Arch. Appl. Mech. 91(3), 997–1005 (2021)

    Article  ADS  Google Scholar 

  11. Abouelmagd, E.I., Ansari, A.A., Ullah, M.S., García Guirao, J.L.: A planar five-body problem in a framework of heterogeneous and mass variation effects. Astron. J. 160(5), 216 (2020)

    Article  ADS  Google Scholar 

  12. Ershkov, S., Leshchenko, D., Abouelmagd, E.: About influence of differential rotation in convection zone of gaseous or fluid giant planet (Uranus) onto the parameters of orbits of satellites. Eur. Phys. J. Plus 136, 387 (2021)

    Article  Google Scholar 

  13. Ershkov, S., Leshchenko, D.: On the stability of Laplace resonance for Galilean moons (Io, Europa, Ganymede). Anais da Academia Brasileira de Ciências (Ann. Braz. Acad. Sci.) 93(4), e20201016 (2021)

    Article  MathSciNet  Google Scholar 

  14. Ershkov, S.V.: About tidal evolution of quasi-periodic orbits of satellites. Earth Moon Planet. 120(1), 15–30 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Ershkov, S., Leshchenko, D., Rachinskaya, A.: Revisiting the dynamics of finite-sized satellite near the planet in ER3BP. Arch. Appl. Mech. 92(8), 2397–2407 (2022)

    Article  ADS  Google Scholar 

  16. Ershkov, S., Leshchenko, D., Rachinskaya, A.: Capture in regime of a trapped motion with further inelastic collision for finite-sized asteroid in ER3BP. Symmetry 14(8), 1548 (2022)

    Article  ADS  Google Scholar 

  17. Ershkov, S.V., Leshchenko, D.: Solving procedure for 3D motions near libration points in CR3BP. Astrophys. Space Sci. 364, 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ershkov, S., Leshchenko, D., Prosviryakov, E.Yu.: A novel type of ER3BP introducing Milankovitch cycles or seasonal irradiation processes influencing onto orbit of planet. Arch. Appl. Mech. 93, 813–822 (2023)

    Article  ADS  Google Scholar 

  19. Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astr. 101, 171–201 (2008). https://doi.org/10.1007/s10569-008-9133-x

    Article  ADS  MathSciNet  Google Scholar 

  20. Singh, J., Umar, A.: On motion around the collinear libration points in the elliptic R3BP with a bigger triaxial primary. New Astron. 29, 36–41 (2014)

    Article  ADS  Google Scholar 

  21. Zotos, E.E.: Crash test for the Copenhagen problem with oblateness. Celest. Mech. Dyn. Astron. 122(1), 75–99 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Abouelmagd, E.I., Sharaf, M.A.: The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness. Astrophys. Space Sci. 344(2), 321–332 (2013)

    Article  ADS  Google Scholar 

  23. Kushvah, B.S., Sharma, J.P., Ishwar, B.: Nonlinear stability in the generalised photogravitational restricted three body problem with Poynting-Robertson drag. Astrophys. Space Sci. 312(3–4), 279–293 (2007)

    Article  ADS  Google Scholar 

  24. Nekhoroshev, N.N.: Exponential estimate on the stability time of near integrable Hamiltonian systems. Russ Math. Survey 32, N6 (1977)

    Article  ADS  Google Scholar 

  25. Lidov, M.L., Vashkov’yak, M.A.: Theory of perturbations and analysis of the evolution of quasi-satellite orbits in the restricted three-body problem. Kosmicheskie Issledovaniia 31, 75–99 (1993)

    ADS  Google Scholar 

  26. Peale, S.J.: Orbital resonances in the solar system. Ann. Rev. Astron. Astro-Phys. 14, 215–246 (1976)

    Article  ADS  Google Scholar 

  27. Wiegert, P., Innanen, K., Mikkola, S.: The stability of quasi satellites in the outer solar system. Astron. J. 119, 1978–1984 (2000). https://doi.org/10.1086/301291

    Article  ADS  Google Scholar 

  28. Lhotka C.: Nekhoroshev stability in the elliptic restricted three body problem. Thesis for: Doktor reris naturalis (2008). https://doi.org/10.13140/RG.2.1.2101.3848

  29. Abouelmagd, E.I., Mortari, D., Selim, H.H.: Analytical study of periodic solutions on perturbed equatorial two-body problem. Int. J. Bifurc. Chaos 25(14), 1540040 (2015)

    Article  MathSciNet  Google Scholar 

  30. Abouelmagd, E.I.: Periodic solution of the two-body problem by KB averaging method within frame of the modified newtonian potential. J. Astronaut. Sci. 65(3), 291–306 (2018)

    Article  ADS  Google Scholar 

  31. Alshaery, A.A., Abouelmagd, E.I.: Analysis of the spatial quantized three-body problem. Results Phys. 17, 103067 (2020)

    Article  Google Scholar 

  32. Abouelmagd, E.I., Llibre, J., Guirao, J.L.G.: Periodic orbits of the planar anisotropic Kepler problem. Int. J. Bifurc. Chaos 27(3), 1750039 (2017)

    Article  MathSciNet  Google Scholar 

  33. Abouelmagd, E.I., Guirao, J.L.G., Pal, A.K.: Periodic solution of the nonlinear Sitnikov restricted three-body problem. New Astron. 75, 101319 (2020)

    Article  Google Scholar 

  34. Emelyanov, N.V.: Influence of tides in viscoelastic bodies of planet and satellite on the satellite’s orbital motion. Mon. Not. R. Astron. Soc. 479(1), 1278–1286 (2018)

    ADS  Google Scholar 

  35. Lu, T., et al.: Self-consistent spin, tidal, and dynamical equations of motion in the REBOUNDx framework. Astrophys. J. 948(1), 41 (2023). https://doi.org/10.3847/1538-4357/acc06d

    Article  ADS  Google Scholar 

  36. Ershkov, S., Leshchenko, D., Prosviryakov, E.Y., Abouelmagd, E.I.: Finite-sized orbiter’s motion around the natural moons of planets with slow-variable eccentricity of their orbit in ER3BP. Mathematics 11, 3147 (2023). https://doi.org/10.3390/math11143147

    Article  Google Scholar 

  37. Efroimsky, M., Lainey, V.: Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J. Geophys. Res. (2007). https://doi.org/10.1029/2007JE002908

    Article  Google Scholar 

  38. Efroimsky, M., Makarov, V.V.: Tidal friction and tidal lagging. Applicability limitations of a popular formula for the tidal torque. Astrophys. J. 764, 26 (2013)

    Article  ADS  Google Scholar 

  39. Peale, S.J., Cassen, P.: Contribution of tidal dissipation to lunar thermal history. Icarus 36, 245–269 (1978)

    Article  ADS  Google Scholar 

  40. Reid, M.J.: The tidal loss of satellite-orbiting objects and implications for the lunar surface. Icarus 20, 240–248 (1973)

    Article  ADS  Google Scholar 

  41. Gold, T.: Remarks on the paper “ The tidal loss of satellite-orbiting objects and implications for the lunar surface” by Mark. J. Reid. Icarus 24, 134–135 (1975)

    Article  ADS  Google Scholar 

  42. Kollmeier, J.A., Raymond, S.N.: Can moons have moons? Mon. Not. R. Astron. Soc. Lett. 483(1), L80–L8 (2019). https://doi.org/10.1093/mnrasl/sly219

    Article  ADS  Google Scholar 

  43. Rosario-Franco, M., et al.: Orbital stability of exomoons and submoons with applications to Kepler 1625b-I. Astron. J. 159, 260 (2020). https://doi.org/10.3847/1538-3881/ab89a7

    Article  ADS  Google Scholar 

  44. Quarles, B., Li, G., Rosario-Franco, M.: Application of orbital stability and tidal migration constraints for exomoon candidates. Astrophys. J. Lett. 902(1), L20 (2020). https://doi.org/10.3847/2041-8213/abba36

    Article  ADS  Google Scholar 

  45. Moraes, R.A., Vieira Neto, E.: Exploring formation scenarios for the exomoon candidate Kepler 1625b I. Mon. Not. R. Astron. Soc. 495(4), 3763–3776 (2020). https://doi.org/10.1093/mnras/staa1441

    Article  ADS  Google Scholar 

  46. Ershkov, S., Prosviryakov, E., Leshchenko, D., Burmasheva, N.: Semianalytical findings for the dynamics of the charged particle in the Störmer problem. Math. Methods. Appl. Sci. 46(18), 19364–19376 (2023). https://doi.org/10.1002/mma.9631

  47. Ershkov, S.V., Leshchenko, D.: On the dynamics OF NON-RIGID asteroid rotation. Acta Astronaut. 161, 40–43 (2019). https://doi.org/10.1016/j.actaastro.2019.05.011

Download references

Author information

Authors and Affiliations

Authors

Contributions

In this research, S.E. is responsible for the general ansatz and the solving procedure, simple algebra manipulations, calculations, results of the article and also is responsible for the search of analytical and semi-analytical solutions. D.L. is responsible for theoretical investigations as well as for the deep survey in the literature on the problem under consideration. E.P. is responsible for obtaining numerical solutions related to approximated ones (including their graphical plots). All authors agreed with results and conclusions of each other in Sections 1-4.

Corresponding author

Correspondence to Sergey Ershkov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix (mathematical procedure of derivation of Eq. (11)).

Appendix (mathematical procedure of derivation of Eq. (11)).

Let us present mathematical procedure of derivation of Eq. (11) as follows:

Since we consider that main contribution influencing on the orbit of moon in its motion around the host planet stems from the tides raised on the surface of planet by the moon orbiting in the 1:1 spin–orbit resonance around the planet, we can use formulae (3.2) obtained in [14], e.g., dynamical invariant which interrelates semimajor axis with respect to the eccentricity ({a1, e1} = {ap (0), e (0)} = const):

$$ a_{{\text{p}}} = a_{1} \cdot \left( {\frac{e}{{e_{1}^{{}} }}} \right)^{\frac{8}{19}} \cdot \exp \left( {\frac{51}{{19}}(e^{2} - e_{1}^{2} )} \right), $$
(14)

where the term: exp ((51/19)⋅(e2 − e12)) ≅ 1. For the reason that time t has not been involved to be presented in expressions in both parts of (14), we can change the independent variable t → f in (14) for {ap (t), e(t)} → {ap(f), e(f)} (and vice versa) without losing a generality for the dynamical invariant (14). Let us present Eq. (1) in other form as below

$$ \frac{{{\text{d}}f}}{{{\text{d}}t}} = \left( {\frac{{{\text{GM}}}}{{a_{{{\kern 1pt} 1}}^{{{\kern 1pt} 3}} \cdot {\kern 1pt} \left( {\frac{e}{{e_{1}^{{}} }}} \right)^{{\frac{24}{{19}}}} \cdot \exp \left( {\frac{153}{{19}}(e(f)^{2} - e_{{{\kern 1pt} 1}}^{2} )} \right) \cdot (1 - e(f)^{{{\kern 1pt} 2}} )^{3} }}} \right)^{\frac{1}{2}} \cdot (1 + e(f) \cdot \cos f)^{2} $$
(15)

which can be transformed in case of low-eccentricity orbit e ≅ 0 (by neglecting of terms of second-order smallness in (15)) as follows

$$ \begin{aligned} \frac{{{\text{d}}f}}{{{\text{d}}t}}{\kern 1pt} &= \left( {\frac{e}{{e_{1}^{\,} }}} \right)^{{ - \,\frac{12}{{19}}}} \cdot \left( {\frac{{{\text{GM}}}}{{a_{1}^{{{\kern 1pt} 3}} }}} \right)^{\frac{1}{2}} \cdot (1 + e(f) \cdot \cos f)^{2} \\ & \Rightarrow \left\{ {C = \left( {\frac{{{\text{G}}{\kern 1pt} {\text{M}}}}{{a_{1}^{3} }}} \right)^{\frac{1}{2}} ,\left( {\frac{e}{{e_{1}^{{}} }}} \right)^{{ - \frac{12}{{19}}}} \cong 1} \right\} \\ & \Rightarrow \int {\frac{{{\text{d}}f}}{(1 + 2e \cdot \cos f)} \cong Ct} \\ \end{aligned} $$
(16)

(let us remind that we have chosen e1 = e0, a1 = a0 in (11) just for simplicity of presentation of the final result). While in (16) eccentricity e is a very slowly varying function on a long-time scale period, it could be considered equal to constant in Eq. (16) for the sufficiently large period of changing of true anomaly f. Thus, in (16) we have obtained the equation solution of which approximately results to (9) as follows (see [8]):

$$ \begin{aligned} & \int {\frac{{{\text{d}}f}}{(1 + 2e \cdot \cos f)} \cong Ct \Rightarrow } \frac{2}{{\sqrt {1 - 4e^{2} } }}\arctan \left( {\frac{(1 - 2e)\tan (f/2)}{{\sqrt {1 - 4e^{{{\kern 1pt} 2}} } }}} \right) \cong Ct \\ & \Rightarrow 2\arctan \left( {\begin{array}{*{20}c} {} \\ {} \\ \end{array} (1 - 2e)\tan (f/2)\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right) \cong Ct\quad {\text{or}}\quad f \cong 2\arctan \left( {\tan \left( \frac{Ct}{2} \right)(1 + 2e)} \right) \\ \end{aligned} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershkov, S., Leshchenko, D. & Prosviryakov, E.Y. Illuminating dot-satellite motion around the natural moons of planets using the concept of ER3BP with variable eccentricity. Arch Appl Mech 94, 515–527 (2024). https://doi.org/10.1007/s00419-023-02533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02533-x

Keywords

Navigation