Skip to main content

Advertisement

Log in

Effect of Roflumilast, a Selective PDE4 Inhibitor, on Bone Phenotypes in ADO2 Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption that usually results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene. We previously created mouse models of ADO2 (p.G213R) with one of the most common mutations (G215R) as found in humans and demonstrated that this mutation in mice phenocopies the human disease of ADO2. Previous studies have shown that roflumilast (RF), a selective phosphodiesterase 4 (PDE4) inhibitor that regulates the cAMP pathway, can increase osteoclast activity. We also observed that RF increased bone resorption in both wild-type and ADO2 heterozygous osteoclasts in vitro, suggesting it might rescue bone phenotypes in ADO2 mice. To test this hypothesis, we administered RF-treated diets (0, 20 and 100 mg/kg) to 8-week-old ADO2 mice for 6 months. We evaluated bone mineral density and bone micro-architecture using longitudinal in-vivo DXA and micro-CT at baseline, and 6-, 12-, 18-, and 24-week post-baseline time points. Additionally, we analyzed serum bone biomarkers (CTX, TRAP, and P1NP) at baseline, 12-, and 24-week post-baseline. Our findings revealed that RF treatment did not improve aBMD (whole body, femur, and spine) and trabecular BV/TV (distal femur) in ADO2 mice compared to the control group treated with a normal diet. Furthermore, we did not observe any significant changes in serum levels of bone biomarkers due to RF treatment in these mice. Overall, our results indicate that RF does not rescue the osteopetrotic bone phenotypes in ADO2 heterozygous mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnston CC Jr, Lavy N, Lord T, Vellios F, Merritt AD, Deiss WP Jr (1968) Osteopetrosis. a clinical, genetic, metabolic, and morphologic study of the dominantly inherited, benign form. Medicine 47:149–167

    Article  PubMed  Google Scholar 

  2. Cleiren E, Bénichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, Beaverson K, Aledo A, Whyte MP, Yoneyama T, deVernejoul MC, Van Hul W (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10(25):2861–2867

    Article  CAS  PubMed  Google Scholar 

  3. Waguespack SG, Koller DL, White KE, Fishburn T, Carn G, Buckwalter KA, Johnson M, Kocisko M, Evans WE, Foroud T, Econs MJ (2003) Chloride channel 7 (CICN7) gene mutations and autosomal dominant osteopetrosis, Type II. J Bone Miner Res 18(8):1513–1518

    Article  CAS  PubMed  Google Scholar 

  4. Waguespack SG, Hui SL, DiMeglio L, Econs MJ (2007) Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with chloride channel 7 (C1CN7) gene mutations. J Clin Endocrinol Metab 92(3):771–778

    Article  CAS  PubMed  Google Scholar 

  5. Weber DR, Econs MJ, Levine MA (2014) Osteopetrosis: pathogenesis, management and future directions for research. IBMS BoneKey 11:520

    Article  Google Scholar 

  6. Alam I, Gray AK, Chu K, Ichikawa S, Mohammad KS, Capannolo M, Capulli M, Maurizi A, Muraca M, Teti A, Econs MJ, Del Fattore A (2014) Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models. Bone 59:66–75

    Article  CAS  PubMed  Google Scholar 

  7. Chu K, Snyder R, Econs MJ (2006) Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties. J Bone Miner Res 21(7):1089–1097

    Article  CAS  PubMed  Google Scholar 

  8. Giembycz MA, Field SK (2010) Roflumilast: first phosphodiesterase 4 inhibitor approved for treatment of COPD. Drug Des Devel Ther 4:147–58

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wedzicha JA, Calverley PM, Rabe KF (2016) Roflumilast: a review of its use in the treatment of COPD. Int J Chron Obstruct Pulmon Dis 11:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahman N, Ramos-Espiritu L, Milner TA, Buck J, Levin LR (2016) Soluble adenylyl cyclase is essential for proper lysosomal acidification. J Gen Physiol 148(4):325–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henriksen K, Sorensen MG, Nielsen RH, Gram J, Schaller S, Dziegiel MH, Everts V, Bollerslev J, Karsdal MA (2006) Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. J Bone Miner Res 21(1):58–66

    Article  CAS  PubMed  Google Scholar 

  12. Park YG, Kim YH, Kang SK, Kim CH (2006) cAMP-PKA signaling pathway regulates bone resorption mediated by processing of cathepsin K in cultured mouse osteoclasts. Int Immunopharmacol 6(6):947–56

    Article  CAS  PubMed  Google Scholar 

  13. Mediero A, Perez-Aso M, Cronstein BN (2014) Activation of EPAC1/2 is essential for osteoclast formation by modulating NFκB nuclear translocation and actin cytoskeleton rearrangements. FASEB J 28(11):4901–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schulz P, Werner J, Stauber T, Henriksen K, Fendler K (2010) The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO II osteopetrosis does not abolish function but causes a severe trafficking defect. PLoS ONE 5(9):e12585

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weinert S, Jabs S, Hohensee S, Chan WL, Kornak U, Jentsch TJ (2014) Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions. EMBO Rep 15(7):784–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henriksen K, Sørensen MG, Jensen VK, Dziegiel MH, Nosjean O, Karsdal MA (2008) Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Calcif Tissue Int 83(3):230–242

    Article  CAS  PubMed  Google Scholar 

  17. Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2(3):1701–1744

    Article  PubMed  Google Scholar 

  18. Hong JM, Gerard-O’Riley RL, Acton D, Alam I, Econs MJ, Bruzzaniti A. The PDE4 inhibitors Roflumilast and Rolipram rescue ADO2 osteoclast resorption dysfunction (Abstract accepted for publication in Journal of Bone and Mineral Research, supplement 38, 2023)

  19. Hong JM, Rita L. Gerard-O’Riley RL, Acton D, Patel V, Lavu N, Alam I, Econs MJ and Angela Bruzzaniti A (2023) The PDE4 inhibitors Roflumilast and Rolipram Rescue ADO2 Osteoclast Resorption Dysfunction. Calcif Tissue Int (In Revision)

  20. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28(1):2–17

    Article  PubMed  Google Scholar 

  21. Li H, Zuo J, Tang W (2018) Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol 9:1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawamatawong T (2021) Phosphodiesterase-4 Inhibitors for Non-COPD Respiratory Diseases. Front Pharmacol 12:518345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ifegwu OC, Awale G, Rajpura K, Lo KW, Laurencin CT (2017) Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today 22(7):1027–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hertz AL, Beavo JA (2011) Cyclic nucleotides and phosphodiesterases in monocytic differentiation. Handb Exp Pharmacol 204:365–390. https://doi.org/10.1007/978-3-642-17969-3_16

    Article  CAS  Google Scholar 

  25. Kalinkovich A, Livshits G (2021) Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosistherapy. Pharmacol Res 171:105794

    Article  CAS  PubMed  Google Scholar 

  26. Chen T, Wang Y, Hao Z, Hu Y, Li J (2021) Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol 192:114669

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Sun Y, Chen D, Chen K, Huang B, Chen Z (2021) Inhibitory effect of roflumilast on experimental periodontitis. J Periodontol. https://doi.org/10.1002/JPER.20-0858

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T (2019) Roles of cyclic AMP response element binding activation in the ERK1/2 and p38 MAPK signaling pathway in central nervous system, cardiovascular system, osteoclast differentiation and mucin and cytokine production. Int J Mol Sci 20(6):1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Möllmann J, Kahles F, Lebherz C, Kappel B, Baeck C, Tacke F, Werner C, Federici M, Marx N, Lehrke M (2017) The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab 19(4):496–508

    Article  PubMed  Google Scholar 

  30. Cortijo J, Iranzo A, Milara X, Mata M, Cerdá-Nicolás M, Ruiz-Saurí A, Tenor H, Hatzelmann A, Morcillo EJ (2009) Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br J Pharmacol 156(3):534–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G (2005) Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med 172(7):848–853

    Article  PubMed  Google Scholar 

  32. Bethke TD, Böhmer GM, Hermann R, Hauns B, Fux R, Mörike K, David M, Knoerzer D, Wurst W, Gleiter CH (2007) Dose-proportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor. J Clin Pharmacol 47(1):26–36

    Article  CAS  PubMed  Google Scholar 

  33. Neville KA, Szefler SJ, Abdel-Rahman SM, Lahu G, Zech K, Herzog R, Bethke TD, Gleason MC, Kearns GL (2008) Single-dose pharmacokinetics of roflumilast in children and adolescents. J Clin Pharmacol 48(8):978–85

    Article  CAS  PubMed  Google Scholar 

  34. Moussa BA, El-Zaher AA, El-Ashrey MK, Fouad MA (2019) Roflumilast analogs with improved metabolic stability, plasma protein binding, and pharmacokinetic profile. Drug Test Anal 11(6):886–897

    Article  CAS  PubMed  Google Scholar 

  35. Waki Y, Horita T, Miyamoto K, Ohya K, Kasugai S (1999) Effects of XT-44, a phosphodiesterase 4 inhibitor, in osteoblastgenesis and osteoclastgenesis in culture and its therapeutic effects in rat osteopenia models. Jpn J Pharmacol 79(4):477–83

    Article  CAS  PubMed  Google Scholar 

  36. Yao W, Tian XY, Chen J, Setterberg RB, Lundy MW, Chmielzwski P, Froman CA, Jee WS (2007) Rolipram, a phosphodiesterase 4 inhibitor, prevented cancellous and cortical bone loss by inhibiting endosteal bone resorption and maintaining the elevated periosteal bone formation in adult ovariectomized rats. J Musculoskelet Neuronal Interact 7(2):119–30

    CAS  PubMed  Google Scholar 

  37. Munisso MC, Kang JH, Tsurufuji M, Yamaoka T (2012) Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2. Biochimie 94(11):2360–5

    Article  CAS  PubMed  Google Scholar 

  38. Kinoshita T, Kobayashi S, Ebara S, Yoshimura Y, Horiuchi H, Tsutsumimoto T, Wakabayashi S, Takaoka K (2000) Phosphodiesterase inhibitors, pentoxifylline and rolipram, increase bone mass mainly by promoting bone formation in normal mice. Bone 27(6):811–7

    Article  CAS  PubMed  Google Scholar 

  39. Cho ES, Yu JH, Kim MS, Yim M (2004) Rolipram, a phosphodiesterase 4 inhibitor, stimulates osteoclast formation by inducing TRANCE expression in mouse calvarial cells. Arch Pharm Res 27(12):1258–62

    Article  CAS  PubMed  Google Scholar 

  40. Takami M, Cho ES, Lee SY, Kamijo R, Yim M (2005) Phosphodiesterase inhibitors stimulate osteoclast formation via TRANCE/RANKL expression in osteoblasts: possible involvement of ERK and p38 MAPK pathways. FEBS Lett 579(3):832–838

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the US National Institutes of Health grant AG069583.

Author information

Authors and Affiliations

Authors

Contributions

Study design: IA, AB, and MJE. Study conduct: IA, SLH, RLG, DA, RSP, AB, and MJE. Data analysis: IA, SLH, RLG, AB, and MJE. Data interpretation: IA, SLH, RLG, DA, RSP, JMH, AB, and MJE. Drafting manuscript: IA, RLG, AB, and MJE. Revising manuscript content: IA, RLG, AB, and MJE. Approval of final version of manuscript: IA, SLH, RLG, DA, RSP, JMH, AB, and MJE.

Corresponding author

Correspondence to Imranul Alam.

Ethics declarations

Conflict of interests

Imranul Alam, Sara L. Hardman, Rita L. Gerard‑O’Riley, Dena Acton, Reginald S. Parker, Jung Min Hong, Angela Bruzzaniti, and Michael J. Econs declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures involving animals performed in the study followed the guidelines of the Indiana University Animal Care and Use Committee (IACUC Protocol No. 11378). This study does not involve research in humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, I., Hardman, S.L., Gerard-O’Riley, R.L. et al. Effect of Roflumilast, a Selective PDE4 Inhibitor, on Bone Phenotypes in ADO2 Mice. Calcif Tissue Int 114, 419–429 (2024). https://doi.org/10.1007/s00223-023-01180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01180-2

Keywords

Navigation