Skip to main content
Log in

Classification of Time-Optimal Paths Under an External Force Based on Jacobi Stability in Finsler Space

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Two-dimensional time-optimal paths of objects moving under the influence of an external force are discussed based on an analysis of Jacobi stability in Finsler space. When the external force on an object can be described by a function of only one variable, the deviation curvature tensor that determines the Jacobi stability of the object’s path can be obtained from the equation of the path. In such cases, the Jacobi stability of the path is represented by the trace of the deviation curvature tensor. The relationship between the Jacobi stability and the type of path is considered for a force that is described by a single-variable trigonometric function. This type of periodic external force induces a path that extends radially and a path along in a specific direction. Then, we consider the time-averaged eigenvalues of the deviation curvature tensor for each type. A large peak in these average values is observed when the type of path changes. Therefore, the Jacobi instability becomes very large at the boundaries between the path types, and the Jacobi stability analysis can be used as the basis of a classification of the path types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abolghasem, H.: Jacobi stability of Hamiltonian systems. Int. J. Pure Appl. Math. 87, 181–194 (2013)

    Article  Google Scholar 

  2. Aldea, N., Kopacz, P.: Generalized Zermelo navigation on Hermitian manifolds with a critical wind. Results Math. 72, 2165–2180 (2017)

    Article  MathSciNet  Google Scholar 

  3. Aldea, N., Kopacz, P.: Time-optimal navigation in arbitrary winds. Annu. Rev. Control. 49, 164–172 (2020)

    Article  MathSciNet  Google Scholar 

  4. Aldea, N., Kopacz, P.: Time-extremal navigation in arbitrary winds on conformally flat Riemannian manifolds. J. Optim. Theory Appl. 189, 19–45 (2021)

    Article  MathSciNet  Google Scholar 

  5. Aldea, N., Kopacz, P.: Time geodesics on a slippery slope under gravitational wind. Nonlin. Anal. 227, 113160 (2023)

    Article  MathSciNet  Google Scholar 

  6. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  7. Antonelli, P.L., Bucataru, I.: Volterra-Hamilton production models with discounting: general theory and worked examples. Nonlin. Anal. RWA 2, 337–356 (2001)

    Article  MathSciNet  Google Scholar 

  8. Antonelli P.L., Bucataru, I.: KCC theory of a system of second order differential equations. In: Antonelli, P.L. (ed.): Handbook of Finsler Geometry, vol. 1, pp. 83-174. Kluwer Academic Publishers, Dordrecht (2003)

  9. Antonelli, P.L., Bevilacqua, L., Rutz, S.F.: Theories and models in symbiogenesis. Nonlin. Anal. RWA 4, 743–753 (2003)

    Article  MathSciNet  Google Scholar 

  10. Bakolas, E., Tsiotras, P.: Optimal partitioning for spatiotemporal coverage in a drift field. Automatica 49, 2064–2073 (2013)

    Article  MathSciNet  Google Scholar 

  11. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66, 377–435 (2004)

    Article  MathSciNet  Google Scholar 

  12. Biferale, L., Bonaccorso, F., Buzzicotti, M., Di Leoni, P.C., Gustavsson, K.: Zermelo’s problem: optimal point-to-point navigation in 2D turbulent flows using reinforcement learning. Chaos 29, 103138 (2019)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  13. Böhmer, C.G., Harko, T.: Nonlinear stability analysis of the Emden–Fowler equation. J. Nonlinear Math. Phys. 17, 503–516 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Böhmer, C.G., Harko, T., Sabau, S.V.: Jacobi stability analysis of dynamical systems - applications in gravitation and cosmology. Adv. Theor. Math. Phys. 16, 1145–1196 (2012)

    Article  MathSciNet  Google Scholar 

  15. Bonnard, B. Cots., O., Wembe, B.: A Zermelo navigation problem with a vortex singularity. ESAIM Control Optim. Calc. Var. 27, S10 (2021)

  16. Brody, D.C., Meier, D.M.: Solution to the quantum Zermelo navigation problem. Phys. Rev. Lett. 114, 100502 (2015)

    Article  ADS  PubMed  Google Scholar 

  17. Brody, D.C., Gibbons, G.W., Meier, D.M.: Time-optimal navigation through quantum wind. New J. Phys. 17, 033048 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cartan, E.: Observations sur le mémoire précédent. Math. Z. 37, 619–622,: (Extrait d’une lettre à M. D. D. Kosambi) (1933)

  19. Chern, S.-S.: Sur la géométrie d’un système d’équations différentielles du second ordre. Bull. Sci. Math. 63, 206–212 (1939)

    MathSciNet  Google Scholar 

  20. Emerson, S.R., Hedges, J.I.: Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  21. Gibbons, G.W., Herdeiro, C.A.R., Warnick, C.M., Werner, M.C.: Stationary metrics and optical Zermelo–Randers–Finsler geometry. Phys. Rev. D 79, 044022 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gupta, M.K., Yadav, C.K.: Jacobi stability analysis of Rikitake system. Int. J. Geom. Methods Mod. Phys. 13, 1650098 (2016)

  23. Gupta, M.K., Yadav, C.K.: Jacobi stability analysis of Rössler system. Int. J. Bifurc. Chaos 27, 1750056 (2017)

    Article  Google Scholar 

  24. Harko, T., Ho, C.Y., Leung, C.S., Yip, S.: Jacobi stability analysis of the Lorenz system. Int. J. Geom. Methods Mod. Phys. 12, 1550081 (2015)

    Article  MathSciNet  Google Scholar 

  25. Hirakui, Y., Yajima, T.: Geometrical classification of self-similar motion of two-dimensional three point vortex system by deviation curvature on Jacobi field. Adv. Math. Phys. 2021, 9979529 (2021)

    Article  MathSciNet  Google Scholar 

  26. Hubicska, B., Muzsnay, Z.: Holonomy in the quantum navigation problem. Quantum Inf. Process. 18, 325 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kopacz, P.: Application of planar Randers geodesics with river-type perturbation in search models. Appl. Math. Model. 49, 531–553 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kopacz, P.: A note on time-optimal paths on perturbed spheroid. J. Geom. Mech. 10, 139–172 (2018)

    Article  MathSciNet  Google Scholar 

  29. Kopacz, P.: On generalization of Zermelo navigation problem on Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 16, 1950058 (2019)

    Article  MathSciNet  Google Scholar 

  30. Kosambi, D.D.: Parallelism and path-spaces. Math. Z. 37, 608–618 (1933)

    Article  MathSciNet  Google Scholar 

  31. Li, B., Xu, C., Teo, K.L., Chu, J.: Time optimal Zermelo’s navigation problem with moving and fixed obstacles. Appl. Math. Comput. 224, 866–875 (2013)

    Article  MathSciNet  Google Scholar 

  32. Oiwa, S., Yajima, T.: Jacobi stability analysis and chaotic behavior of nonlinear double pendulum. Int. J. Geom. Methods Mod. Phys. 14, 1750176 (2017)

    Article  MathSciNet  Google Scholar 

  33. Oliver, J.E. (ed.): Encyclopedia of World Climatology. Springer, Dordrecht (2005)

    Google Scholar 

  34. Peterson, J.T.A., Singh, S.K., Junkins, J.L., Taheri, E.: Lyapunov guidance in orbit element space for low-thrust cislunar trajectories. In: AAS Guidance, Navigation and Control Conference held January 30–February 5, 2020, Breckenridge, Colorado, USA, AAS 20-115 (2020)

  35. Sabau, S.V.: Some remarks on Jacobi stability. Nonlin. Anal. TMA 63, e143–e153 (2005)

    Article  Google Scholar 

  36. Sabău, V.S.: Systems biology and deviation curvature tensor. Nonlin. Anal. RWA 6, 563–587 (2005)

  37. Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht (2001)

    Book  Google Scholar 

  38. Shiller, Z.: On singular time-optimal control along specified paths. IEEE Trans. Robot. Autom. 10, 561–566 (1994)

    Article  Google Scholar 

  39. Singh, S.K., Taheri, E., Junkins, J.: A hybrid optimal control method for time-optimal slewing maneuvers of flexible spacecraft. In: AAS/AIAA Astrodynamics Specialist Conference held August 19–23, 2018, Snowbird, Utah, USA, AAS 18-331 (2018)

  40. Singh, S.K., Anderson, B.D., Taheri, E., Junkins, J.L.: Low-thrust transfers to southern \(L_{2}\) near-rectilinear halo orbits facilitated by invariant manifolds. J. Optim. Theory Appl. 191, 517–544 (2021)

    Article  MathSciNet  Google Scholar 

  41. Yajima, T., Nagahama, H.: KCC-theory and geometry of the Rikitake system. J. Phys. A: Math. Theor. 40, 2755–2772 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Yajima, T., Nagahama, H.: Geometrical invariants of Rikitake system in KCC-theory. Tensor (N.S.) 69, 106–113 (2008)

  43. Yajima, T., Nagahama, H.: Nonlinear dynamical systems and KCC-theory. Acta Math. Acad. Paedagog. Nyházi. 24, 179–189 (2008)

    MathSciNet  Google Scholar 

  44. Yajima, T., Nagahama, H.: Geometrical unified theory of Rikitake system and KCC-theory. Nonlin. Anal. TMA 71, e203–e210 (2009)

    Article  Google Scholar 

  45. Yajima, T., Nagahama, H.: Tangent bundle viewpoint of the Lorenz system and its chaotic behavior. Phys. Lett. A 374, 1315–1319 (2010)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Yajima, T., Nagahama, H.: Finsler geometry for nonlinear path of fluids flow through inhomogeneous media. Nonlin. Anal. RWA 25, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  47. Yajima, T., Nakase, S.: A geometric interpretation of maximal Lyapunov exponent based on deviation curvature. Int. J. Geom. Methods Mod. Phys. 18, 2150092 (2021)

    Article  MathSciNet  Google Scholar 

  48. Yajima, T., Yamasaki, K.: Jacobi stability for dynamical systems of two-dimensional second-order differential equations and application to overhead crane system. Int. J. Geom. Methods Mod. Phys. 13, 1650045 (2016)

    Article  MathSciNet  Google Scholar 

  49. Yamasaki, K., Yajima, T.: KCC analysis of the normal form of typical bifurcations in one-dimensional dynamical systems: geometrical invariants of saddle-node, transcritical, and pitchfork bifurcations. Int. J. Bifurc. Chaos 27, 1750145 (2017)

  50. Yamasaki, K., Yajima, T.: Lotka-Volterra system and KCC theory: differential geometric structure of competitions and predations. Nonlin. Anal. RWA 14, 1845–1853 (2013)

    Article  MathSciNet  Google Scholar 

  51. Yamasaki, K., Yajima, T.: KCC analysis of a one-dimensional system during catastrophic shift of the Hill function: Douglas tensor in the nonequilibrium region. Int. J. Bifurc. Chaos 30, 2030032 (2020)

    Article  MathSciNet  Google Scholar 

  52. Zermelo, E.: Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung. Z. Angew. Math. Mech. 11, 114–124 (1931)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Mr. Kouhei Takagi and Mr. Yuuki Takagi for their insightful comments and discussions on the time-optimal problem in Finsler space. This work was supported by JSPS KAKENHI Grant Number 23K03226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Yajima.

Additional information

Communicated by Vincenzo Capasso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Geometrical Quantities Obtained From Finsler Function with Periodic External Forces

Appendix A: Geometrical Quantities Obtained From Finsler Function with Periodic External Forces

In this Appendix, we describe the geometrical quantities obtained from Finsler function (2) with the external forces for cases (A) and (B).

1.1 Geometrical Quantities in Case of External Force (A)

First, the geometrical quantities are considered for case (A). The coefficients of the nonlinear connection are given by the functions \(G^{1}\) and \(G^{2}\):

$$\begin{aligned}{} & {} N^{1}_{1}=\frac{\gamma }{1-h^{2}}(\alpha f_{xx}+g_{xx}), \end{aligned}$$
(47)
$$\begin{aligned}{} & {} N^{1}_{2}=\frac{\gamma {\dot{x}}}{1-h^{2}}(\alpha f_{xy}+g_{xy}), \end{aligned}$$
(48)
$$\begin{aligned}{} & {} N^{2}_{1}=-\gamma {\dot{x}}(\alpha f_{yx}+g_{yx}), \end{aligned}$$
(49)
$$\begin{aligned}{} & {} N^{2}_{2}=\frac{\gamma }{1-h^{2}}(\alpha f_{xy}+g_{yy}), \end{aligned}$$
(50)

where we put the coefficients in the nonlinear connection as

$$\begin{aligned}{} & {} \gamma =\frac{h'}{2\alpha ^{2}({\dot{x}}^{2}+{\dot{y}}^{2})^{2}}, \end{aligned}$$
(51)
$$\begin{aligned}{} & {} f_{xx}=2h^{2}(h^{2}-1){\dot{x}}^{6}-h^{2}(5-4h^{2}){\dot{x}}^{4} {\dot{y}}^{2}-(1+h^{2}){\dot{x}}^{2}{\dot{y}}^{4}-{\dot{y}}^{6}, \end{aligned}$$
(52)
$$\begin{aligned}{} & {} f_{xy}={\dot{y}}\{(-2h^{4}+3h^{2}-2){\dot{x}}^{4}+(h^{2}-3) {\dot{x}}^{2}{\dot{y}}^{2}-{\dot{y}}^{4}\}, \end{aligned}$$
(53)
$$\begin{aligned}{} & {} f_{yx}={\dot{y}}\{h^{2}{\dot{x}}^{4}+(3h^{2}-1){\dot{x}}^{2} {\dot{y}}^{2}-{\dot{y}}^{4}\}, \end{aligned}$$
(54)
$$\begin{aligned}{} & {} f_{yy}=h^{2}(h^{2}-1){\dot{x}}^{6}-(h^{4}-2h^{2}+3){\dot{x}}^{4} {\dot{y}}^{2}+(h^{2}-5){\dot{x}}^{2}{\dot{y}}^{4}-2{\dot{y}}^{6}, \end{aligned}$$
(55)
$$\begin{aligned}{} & {} g_{xx}=h{\dot{y}}\{(h^{4}-3h^{2}+2){\dot{x}}^{6}+(3h^{4}-9h^{2}+7) {\dot{x}}^{4}{\dot{y}}^{2}\nonumber \\ {}{} & {} \qquad \quad \,+2(3-2h^{2}){\dot{x}}^{2}{\dot{y}}^{4}+{\dot{y}}^{6}\}, \end{aligned}$$
(56)
$$\begin{aligned}{} & {} g_{xy}=h\{(h^{4}-3h^{2}+2){\dot{x}}^{6}-(h^{4}+h^{2}-3) {\dot{x}}^{4}{\dot{y}}^{2}+2{\dot{x}}^{2}{\dot{y}}^{4}+{\dot{y}}^{6}\}, \end{aligned}$$
(57)
$$\begin{aligned}{} & {} g_{yx}=-2h{\dot{x}}^{2}\{(h^{2}-1){\dot{x}}^{2}-{\dot{y}}^{2}\} ({\dot{x}}^{2}+2{\dot{y}}^{2}), \end{aligned}$$
(58)
$$\begin{aligned}{} & {} g_{yy}=2h{\dot{y}}\{(h^{4}-3h^{2}+2){\dot{x}}^{6}+(4-3h^{2}) {\dot{x}}^{4}{\dot{y}}^{2}-(h^{2}-3){\dot{x}}^{2}{\dot{y}}^{4}+{\dot{y}}^{6}\}. \end{aligned}$$
(59)

The coefficients of the Berwald connection \(G^{i}_{jk}\) are given by

$$\begin{aligned}{} & {} G^{1}_{11}=\mu {\dot{x}}(F_{xxx}+\alpha ^{3}G_{xxx}), \end{aligned}$$
(60)
$$\begin{aligned}{} & {} G^{1}_{12}=-\frac{\mu }{1-h^{2}}(F_{xxy}+\alpha ^{3}G_{xxy}), \end{aligned}$$
(61)
$$\begin{aligned}{} & {} G^{1}_{22}=\mu {\dot{x}}^{3}\left( F_{xyy}+\alpha ^{3}G_{xyy}\right) , \end{aligned}$$
(62)
$$\begin{aligned}{} & {} G^{2}_{11}=\mu (F_{yxx}+\alpha ^{3}G_{yxx}), \end{aligned}$$
(63)
$$\begin{aligned}{} & {} G^{2}_{12}=\mu {\dot{x}}^{3}(F_{yxy}+\alpha ^{3}G_{yxy}), \end{aligned}$$
(64)
$$\begin{aligned}{} & {} G^{2}_{22}=-\frac{\mu }{1-h^{2}}(F_{yyy}+\alpha ^{3}G_{yyy}). \end{aligned}$$
(65)

Here, the coefficients in the Berwald connection are defined by

$$\begin{aligned}{} & {} \mu =\frac{h'}{2\alpha ^{3}({\dot{x}}^{2}+{\dot{y}}^{2})^{3}}, \end{aligned}$$
(66)
$$\begin{aligned}{} & {} F_{xxx}=2h^{2}(h^{2}-1){\dot{x}}^{8}+3h^{2}(2h^{2}-3){\dot{x}}^{6}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{3cm}+3(4h^{4}-8h^{2}+1){\dot{x}}^{4}{\dot{y}}^{4} +(6-17h^{2}){\dot{x}}^{2}{\dot{y}}^{6}+3{\dot{y}}^{8}, \end{aligned}$$
(67)
$$\begin{aligned}{} & {} F_{xxy}={\dot{y}}^{3}\{(-8h^{6}+20h^{4}-15h^{2}+4){\dot{x}}^{6} \nonumber \\{} & {} \hspace{3cm}+3(4h^{4}-6h^{2}+3){\dot{x}}^{4}{\dot{y}}^{2} -3(h^{2}-2){\dot{x}}^{2}{\dot{y}}^{4}+{\dot{y}}^{6}\}, \end{aligned}$$
(68)
$$\begin{aligned}{} & {} F_{xyy}=(-2h^{4}+3h^{2}-2){\dot{x}}^{6}+3(2h^{4}-2h^{2}-1){\dot{x}}^{4}{\dot{y}}^{2} -9h^{2}{\dot{x}}^{2}{\dot{y}}^{4}+{\dot{y}}^{6}, \end{aligned}$$
(69)
$$\begin{aligned}{} & {} F_{yxx}={\dot{y}}^{3}F_{xyy}, \end{aligned}$$
(70)
$$\begin{aligned}{} & {} F_{yxy}=h^{2}(h^{2}-1){\dot{x}}^{6}+3(2h^{4}-3h^{2}+1){\dot{x}}^{4}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{2cm}-3(h^{4}+h^{2}-2){\dot{x}}^{2}{\dot{y}}^{4}+(3+5h^{2}){\dot{y}}^{6}, \end{aligned}$$
(71)
$$\begin{aligned}{} & {} F_{yyy}={\dot{y}}\{3(-2h^{6}+5h^{4}-5h^{2}+2){\dot{x}}^{8} +(2h^{6}+4h^{4}-21h^{2}+17){\dot{x}}^{6}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{3.5cm}-3(h^{4}+3h^{2}-6){\dot{x}}^{4}{\dot{y}}^{4} -3(h^{2}-3){\dot{x}}^{2}{\dot{y}}^{6}+2{\dot{y}}^{8}\}, \end{aligned}$$
(72)
$$\begin{aligned}{} & {} G_{xxx}=-2h{\dot{y}}^{3}({\dot{x}}^{2}-3{\dot{y}}^{2}), \end{aligned}$$
(73)
$$\begin{aligned}{} & {} G_{xxy}=h\{(h^{2}-2){\dot{x}}^{6}+3(2h^{2}-3){\dot{x}}^{4} {\dot{y}}^{2}-3h^{2}{\dot{x}}^{2}{\dot{y}}^{4}-{\dot{y}}^{6}\}, \end{aligned}$$
(74)
$$\begin{aligned}{} & {} G_{xyy}=-2h{\dot{y}}(3{\dot{x}}^{2}-{\dot{y}}^{2}), \end{aligned}$$
(75)
$$\begin{aligned}{} & {} G_{yxx}=-2h{\dot{x}}^{2}({\dot{x}}^{4}+3{\dot{x}}^{2}{\dot{y}}^{2}+6{\dot{y}}^{4}), \end{aligned}$$
(76)
$$\begin{aligned}{} & {} G_{yxy}=8h{\dot{y}}^{3}, \end{aligned}$$
(77)
$$\begin{aligned}{} & {} G_{yyy}=2h\{(h^{2}-2){\dot{x}}^{6}-3h^{2}{\dot{x}}^{4}{\dot{y}}^{2} -3{\dot{x}}^{2}{\dot{y}}^{4}-{\dot{y}}^{6}\}. \end{aligned}$$
(78)

1.2 Geometrical Quantities in Case of External Force (B)

The geometrical quantities of the external force for case (B) can be obtained as case for (A). The coefficients of the nonlinear connection are given by the functions \(G^{1}\) and \(G^{2}\):

$$\begin{aligned}{} & {} N^{1}_{1}=\frac{\zeta {\dot{y}}}{\beta }({\tilde{f}}_{xx}+\beta {\dot{x}}{\tilde{g}}_{xx}), \end{aligned}$$
(79)
$$\begin{aligned}{} & {} N^{1}_{2}=\frac{\zeta }{\beta }({\tilde{f}}_{xy}+\beta {\tilde{g}}_{xy}), \end{aligned}$$
(80)
$$\begin{aligned}{} & {} N^{2}_{1}=\frac{\zeta }{1-h^{2}}({\tilde{f}}_{yx}-2\beta h{\dot{x}}{\tilde{g}}_{yx}), \end{aligned}$$
(81)
$$\begin{aligned}{} & {} N^{2}_{2}=\zeta {\dot{y}}({\tilde{f}}_{yy}-2h\beta {\tilde{g}}_{yy}), \end{aligned}$$
(82)

where we put the coefficients in the nonlinear connection as

$$\begin{aligned}{} & {} \zeta =\frac{h'}{2\beta (1-h^{2})({\dot{x}}^{2}+{\dot{y}}^{2})^{2}}. \end{aligned}$$
(83)
$$\begin{aligned}{} & {} {\tilde{f}}_{xx}\!=\!h\{2{\dot{x}}^{6}\!-\!(h^{2}\!-\!5){\dot{x}}^{4}{\dot{y}}^{2}\!-\!(h^{4} \!+\!3h^{2}\!-\!6){\dot{x}}^{2}{\dot{y}}^{4}\!+\!(h^{2}\!-\!3)(h^{2}\!-\!1){\dot{y}}^{6}\}, \end{aligned}$$
(84)
$$\begin{aligned}{} & {} {\tilde{f}}_{xy}=h{\dot{x}}\{2{\dot{x}}^{6}+(9-5h^{2}){\dot{x}}^{4}{\dot{y}}^{2} +(h^{2}-2)(3h^{2}-5){\dot{x}}^{2}{\dot{y}}^{4}\nonumber \\ {}{} & {} \qquad \quad \,+(h^{2}-3)(h^{2}-1){\dot{y}}^{6}\}, \end{aligned}$$
(85)
$$\begin{aligned}{} & {} {\tilde{f}}_{yx}=2(1+h^{2}){\dot{x}}^{6}-(h^{2}-5)(h^{2}+1) {\dot{x}}^{4}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{2cm}-(h^{2}+1)(h^{4}-3){\dot{x}}^{2}{\dot{y}}^{4} +h^{2}(h^{2}-3)(h^{2}-1){\dot{y}}^{6}, \end{aligned}$$
(86)
$$\begin{aligned}{} & {} {\tilde{f}}_{yy}={\dot{x}}\{(3h^{2}-1){\dot{x}}^{4}-(3h^{4}-8h^{2}+1) {\dot{x}}^{2}{\dot{y}}^{2}-h^{2}(h^{2}-3){\dot{y}}^{4}\}. \end{aligned}$$
(87)
$$\begin{aligned}{} & {} {\tilde{g}}_{xx}=-2{\dot{x}}^{4}+(h^{2}-5){\dot{x}}^{2}{\dot{y}}^{2}-(2h^{4}-3h^{2}+3){\dot{y}}^{4}, \ \end{aligned}$$
(88)
$$\begin{aligned}{} & {} {\tilde{g}}_{xy}=-2{\dot{x}}^{6}+(h^{2}-5){\dot{x}}^{4}{\dot{y}}^{2} +(4h^{2}-5)(h^{2}+1){\dot{x}}^{2}{\dot{y}}^{4}+2(h^{4}-1){\dot{y}}^{6}, \end{aligned}$$
(89)
$$\begin{aligned}{} & {} {\tilde{g}}_{yx}=2{\dot{x}}^{4}+4{\dot{x}}^{2}{\dot{y}}^{2}+(h^{4}-2h^{2}+3){\dot{y}}^{4}, \end{aligned}$$
(90)
$$\begin{aligned}{} & {} {\tilde{g}}_{yy}={\dot{x}}^{4}+2h^{2}{\dot{x}}^{2}{\dot{y}}^{2}+h^{2}{\dot{y}}^{4}. \end{aligned}$$
(91)

The coefficients of the Berwald connection \(G^{i}_{jk}\) are given by

$$\begin{aligned}{} & {} G^{1}_{11}=\beta \xi {\dot{y}}^{3}({\tilde{F}}_{xxx}+2\beta ^{3}h {\tilde{G}}_{xxx}), \end{aligned}$$
(92)
$$\begin{aligned}{} & {} G^{1}_{12}=-\frac{\beta \xi }{1-h^{2}}({\tilde{F}}_{xxy}-\beta ^{3}h{\tilde{G}}_{xxy}), \end{aligned}$$
(93)
$$\begin{aligned}{} & {} G^{1}_{22}=\beta \xi ({\tilde{F}}_{xyy}+2\beta ^{3}h{\tilde{G}}_{xyy}), \end{aligned}$$
(94)
$$\begin{aligned}{} & {} G^{2}_{11}=\frac{\beta \xi }{(1-h^{2})^{2}}({\tilde{F}}_{yxx}+2\beta h{\tilde{G}}_{yxx}), \end{aligned}$$
(95)
$$\begin{aligned}{} & {} G^{2}_{12}=-\beta \xi {\dot{y}}^{3}({\tilde{F}}_{yxy}+\beta ^{3}{\tilde{G}}_{yxy}), \end{aligned}$$
(96)
$$\begin{aligned}{} & {} G^{2}_{22}=-\frac{\beta \xi }{1-h^{2}}({\tilde{F}}_{yyy}+2\beta ^{3}h{\tilde{G}}_{yyy}). \end{aligned}$$
(97)

Here, the coefficients in the Berwald connection are defined by

$$\begin{aligned}{} & {} \xi =\frac{h'}{2\beta ^{4}({\dot{x}}^{2}+{\dot{y}}^{2})^{3}}, \end{aligned}$$
(98)
$$\begin{aligned}{} & {} {\tilde{F}}_{xxx}=-{\dot{y}}^{2}\{(9h^{2}+3){\dot{x}}^{4}-6(h^{4}-h^{2}-1) {\dot{x}}^{2}{\dot{y}}^{2}+(2h^{4}-3h^{2}+3){\dot{y}}^{4}\}, \end{aligned}$$
(99)
$$\begin{aligned}{} & {} {\tilde{F}}_{xxy}={\dot{x}}^{3}\{2{\dot{x}}^{6}-3(h^{2}-3){\dot{x}}^{4} {\dot{y}}^{2}+6(2h^{4}-3h^{2}+2){\dot{x}}^{2}{\dot{y}}^{4} \nonumber \\{} & {} \hspace{4.0cm}-(8h^{6}-20h^{4}+15h^{2}-5){\dot{y}}^{6}\}, \end{aligned}$$
(100)
$$\begin{aligned}{} & {} {\tilde{F}}_{xyy}=-{\dot{y}}^{3}\{5(3h^{2}+1){\dot{x}}^{6} -6(2h^{2}+1)(h^{2}-2){\dot{x}}^{4}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{3cm}-3(2h^{2}-3)(h^{2}+1){\dot{x}}^{2}{\dot{y}}^{4}-2(h^{4}-1){\dot{y}}^{6}\}, \end{aligned}$$
(101)
$$\begin{aligned}{} & {} {\tilde{F}}_{yxx}={\dot{x}}\{2(1+h^{2}){\dot{x}}^{8}-3(h^{2}-3) (h^{2}+1){\dot{x}}^{6}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{1.5cm}+3(h^{6}-4h^{4}+h^{2}+6){\dot{x}}^{4}{\dot{y}}^{4} -(2h^{8}+2h^{6}-7h^{4}+16h^{2}-17){\dot{x}}^{2}{\dot{y}}^{6} \nonumber \\{} & {} \hspace{2cm}+3(2h^{8}-7h^{6}+8h^{4}-5h^{2}+2){\dot{y}}^{8}\}, \end{aligned}$$
(102)
$$\begin{aligned}{} & {} {\tilde{F}}_{yxy}=3(1+h^{2}){\dot{x}}^{6}-3(h^{4}+3h^{2}-2){\dot{x}}^{4}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{2cm}+3(2h^{4}-5h^{2}+1){\dot{x}}^{2}{\dot{y}}^{4}+h^{2}(h^{2}-3){\dot{y}}^{6}, \end{aligned}$$
(103)
$$\begin{aligned}{} & {} {\tilde{F}}_{yyy}=-{\dot{x}}^{3}\{(3h^{2}-1){\dot{x}}^{6}-3h^{2} (3h^{2}-5){\dot{x}}^{4}{\dot{y}}^{2} \nonumber \\{} & {} \hspace{2cm}+3(2h^{6}-4h^{4}+3h^{2}+1){\dot{x}}^{2}{\dot{y}}^{4} -(2h^{6}-5h^{4}+3h^{2}-2){\dot{y}}^{6}. \end{aligned}$$
(104)
$$\begin{aligned}{} & {} {\tilde{G}}_{xxx}={\dot{x}}({\dot{x}}-3{\dot{y}}^{2}), \end{aligned}$$
(105)
$$\begin{aligned}{} & {} {\tilde{G}}_{xxy}=2{\dot{x}}^{6}+3(h^{2}+1){\dot{x}}^{4}{\dot{y}}^{2} -6(h^{2}-2){\dot{x}}^{2}{\dot{y}}^{4}-(h^{2}-3){\dot{y}}^{6}, \end{aligned}$$
(106)
$$\begin{aligned}{} & {} {\tilde{G}}_{xyy}={\dot{x}}^{3}{\dot{y}}(3{\dot{x}}^{2}-{\dot{y}}^{2}), \end{aligned}$$
(107)
$$\begin{aligned}{} & {} {\tilde{G}}_{yxx}=-2{\dot{x}}^{8}+2(h^{2}-4){\dot{x}}^{6}{\dot{y}}^{2} +3(h^{4}-3){\dot{x}}^{4}{\dot{y}}^{4} \nonumber \\{} & {} \hspace{2.0cm}-(3h^{6}-8h^{4}+h^{2}+6){\dot{x}}^{2}{\dot{y}}^ {6}+(h^{6}-3h^{4}+5h^{2}-3){\dot{y}}^{8}, \end{aligned}$$
(108)
$$\begin{aligned}{} & {} {\tilde{G}}_{yxy}=8h{\dot{x}}^{3}, \end{aligned}$$
(109)
$$\begin{aligned}{} & {} {\tilde{G}}_{yyy}={\dot{x}}^{6}+3(2h^{2}-1){\dot{x}}^{4} {\dot{y}}^{2}+3h^{2}{\dot{x}}^{2}{\dot{y}}^{4}+h^{2}{\dot{y}}^{6}. \end{aligned}$$
(110)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yajima, T., Tazawa, Y. Classification of Time-Optimal Paths Under an External Force Based on Jacobi Stability in Finsler Space. J Optim Theory Appl 200, 1216–1238 (2024). https://doi.org/10.1007/s10957-023-02374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02374-2

Keywords

Mathematics Subject Classification

Navigation