Skip to main content
Log in

Abstract

The small frequency offset across the array elements in frequency diverse array (FDA) radars leads to the range-angle-time dependent beampattern of FDA radars which is different from the angle-only dependent beampattern of the traditional phased arrays. In this paper, a simple signal model for the received signal in pulsed FDA radars is derived and it is shown that the transmitted signal is amplitude modulated by a digital sinc function which depends on the angle of the scatterer. Then, a signal design framework is presented based on the derived model in which it is represented that how the angular coverage zone and range resolution depend on pulsed FDA radar parameters. After that an iterative low complexity constant false alarm rate (CFAR) Generalized Likelihood Ratio Test (GLRT)-based detector for general FDA radars is derived to detect multiple targets in the presence of clutter and noise. The performance of the proposed detection algorithm is verified by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For the sake of simplicity we have merged the attenuation due to the signal propagation in parameter a.

References

  • Abed AM, Salehi JA, Hariri A (2017) Multiuser detector for airborne co-located multiple input/multiple output radar using compressive measurements. IET Radar Sonar Navig 11(2):260–268

    Article  Google Scholar 

  • Ahmad Z, Shi Z, Zhou C (2021) Time-variant focusing range-angle dependent beampattern synthesis by uniform circular frequency diverse array radar. IET Radar Sonar Navig 15:62–74

    Article  Google Scholar 

  • Antonik P, Wicks MC, Griffiths HD, Baker CJ (2006) Frequency diverse array radars. In: Proceedings of IEEE Conference on Radar, Syracuse, NY, USA, pp 215–217

  • Basit A, Khan W, Khan S, Qureshi IM (2018) Development of frequency diverse array radar technology: a review. IET Radar Sonar Navig 12(2):165–175

    Article  Google Scholar 

  • Basit A, Qureshi I, Khan W, Rehman S, Khan MM (2017) Beam pattern synthesis for an FDA radar with hamming window based nonuniform frequency offset. IEEE Antennas Wirel Propag Lett 16(99):2283–2286

    Article  ADS  Google Scholar 

  • Brookner E (2002) Phased array radars -past, present and future. In: International Radar Conference, UK, pp 104–113

  • Cui C, Xiong J, Wang WQ, Wu W (2018) Localization performance analysis of FDA radar receiver with two-stage estimator. IEEE Trans Aerosp Electron Syst 54(6):2873–2887

    Article  ADS  Google Scholar 

  • Dong Y (2018) Frequency diverse array radar signal and data processing. IET Radar Sonar Navig 12(9):954–963

    Article  Google Scholar 

  • Gao KD, Wang WQ, Cai JY (2016b) Frequency diverse array and MIMO hybrid radar transmitter design via CRLB minimization. IET Radar Sonar Navig 10(9):1660–1670

    Article  Google Scholar 

  • Gao K, Wang WQ, Ji Ca, Xiong J (2016) Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets. IET Microw Antennas Propag 10(8):880–884

    Article  Google Scholar 

  • Gui R, Wang WQ, Cui C, So HC (2018a) Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis. IEEE Trans Signal Process 66(1):200–214

    Article  ADS  MathSciNet  Google Scholar 

  • Gui R, Wang WQ, Shao H (2018b) General receiver design for FDA radar. In: IEEE Radar Conference (RadarConf18), pp 280–285

  • Jia W, Wang WQ, Hou Y, Zhang S (2019) Integrated communication and localization system with OFDM-chirp waveform. IEEE Syst J 14(2):2464–2472

    Article  ADS  Google Scholar 

  • Jones AM (2011) Frequency diverse array receiver architectures, Master’s thesis, Wright State University

  • Jones AM, Rigling BD (2012) Frequency diverse array radar receiver architectures. In: International Waveform Diversity Design Conference(WDD). Kauai, HI, pp 211–217

  • Lan L, Marino A, Aubry A, Maio AD, Liao G, Xu J, Zhang Y (2021) GLRT-based adaptive target detection in FDA-MIMO radar. IEEE Trans Aerosp Electron Syst 57:597–613

    Article  ADS  Google Scholar 

  • Li J, Stoica P (2009) MIMO radar signal processing. John Willey and Sons, Hoboken

    Google Scholar 

  • Liao Y, Wang J, Liu QH (2021) Transmit beampattern synthesis for frequency diverse array with particle swarm frequency offset optimization. IEEE Trans Antennas Propag 69:892–901

    Article  ADS  Google Scholar 

  • Liu Q, Xu J, Ding Z, So HC (2020) Target localization with jammer removal using frequency diverse array. IEEE Trans Veh Technol. 69:11685–11696

    Article  Google Scholar 

  • Luo Wang S, Xu ZH, Liu X, Dong W, Wang G (2018) Subarray-based frequency diverse array for target range-angle localization with monopulse processing. IEEE Sens J 18:5937–5947

    Article  ADS  Google Scholar 

  • Qin S, Zhang YD, Amin MG, Gini F (2017) Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE J Sel Topics Signal Process 11(2):321–335

    Article  ADS  Google Scholar 

  • Scharf LL, Friedlander B (1994) Matched subspace detectors. IEEE Trans Signal Process 42(8):2146–2157

    Article  ADS  Google Scholar 

  • Wang WQ (2015) Frequency diverse array antenna: new opportunities. IEEE Antennas Propag Mag 57(2):145–152

    Article  ADS  Google Scholar 

  • Wang H, Liao G, Xu J, Zhu S (2020) Space-time matched filter design for interference suppression in coherent frequency diverse array. IET Signal Proc 14(3):175–181

    Article  CAS  Google Scholar 

  • Wang YB, Wang WQ, Chen H, Shao HZ (2016b) Optimal frequency diverse subarray design with Cram’er-Rao lower bound minimization. IEEE Antennas Wirel Propag Lett 14:1188–1191

    Article  ADS  Google Scholar 

  • Wang Z, Wang WQ, Shao H (2016) Range-azimuth decouple beamforming for frequency diverse array with costas-sequence modulated frequency offsets. Eurasip J Adv Signal Process 2016:124

    Article  ADS  Google Scholar 

  • Wang C, Zhu X (2021) Three-dimensional parameter estimation of uniform circular frequency diverse array radar with two-stage estimator. IEEE Sens J 21:17775–17784

    Article  ADS  Google Scholar 

  • Wang C, Zhu X, Hong H (2021) Range-angle decoupling and estimation for FDA radar with non-uniform frequency offset. IEEE Commun Lett 25:3272–3276

    Article  Google Scholar 

  • Xiong J, Wang WQ, Gao K (2018) FDA-MIMO radar range-angle estimation: CRLB, MSE and resolution analysis. IEEE Trans Aerosp Electron Syst 54(1):284–294

    Article  ADS  Google Scholar 

  • Xu JW, Liao GS, Zhu SQ, Huang L, So HC (2015b) Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Trans Signal Process 63(13):3396–3410

    Article  ADS  MathSciNet  Google Scholar 

  • Xu J, Liao G, Zhu S, Huang L, So HC (2015a) Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Trans Signal Process 63:3396–3410

    Article  ADS  MathSciNet  Google Scholar 

  • Xu Y, Luk KM (2020) Enhanced transmit-receive beamforming for frequency diverse array. IEEE Trans Antennas Propag 68:5344–5352

    Article  ADS  Google Scholar 

  • Xu J, Lan L, Liao G, Zhang Y (2017) Range-angle matched receiver for coherent FDA radars, In IEEE Radar Conference (RadarConf), 0324-0328

  • Xua Y, Shia X, Xub J, Huangc L, Lia W (2017) Range-angle-decoupled beampattern synthesis with subarray-based frequency diverse array. Elsevier J Digit Signal Process 64:49–59

    Article  MathSciNet  Google Scholar 

  • Zaimbashi A, Derakhtian M, Sheikhi A (2013) GLRT-based CFAR detection in passive bistatic radar. IEEE Trans Aerosp Electron Syst 49(1):134–159

    Article  ADS  Google Scholar 

  • Zhong JS (1981) Effective pattern and anti-clutter performance of frequency-scanning radar antennas. In: Antennas and Propagation Society International Symposium, pp 165–167

  • Zhu J, Zhu S, Xu J, Lan L, He X (2022) Cooperative range and angle estimation with PA and FDA radars. IEEE Trans Aerosp Electron Syst 58:907–921

    Article  ADS  Google Scholar 

Download references

Funding

This research is not funded by any institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marziye Golabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golabi, M., Sheikhi, A. & Biguesh, M. Signal Design and Multiple Target Detection in Presence of Clutter in Pulsed FDA Radar. Iran J Sci Technol Trans Electr Eng (2024). https://doi.org/10.1007/s40998-023-00693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40998-023-00693-8

Keywords

Navigation