Skip to main content
Log in

Double-ridge arrays metasurface for multifunctional splitter at terahertzs

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, unlike many researches that focus on beam splitters based on gratings with symmetrical structures, an asymmetric grating with double-groove structure is proposed. Based on the double-groove grating, multi-port beam splitters including dual-port, three-port, and four-port, under normal incidence working at terahertz frequency are designed for both transverse-electric and transverse-magnetic polarizations. Rigorous couple-wave analysis and simulated annealing algorithm are employed to get the optimal parameters of the grating and accelerate the computing process. For the purpose of understanding the phenomenon of the beam incident, the finite element method is also applied to get the simulation result. It is proven that the proposed beam splitters all present great efficiency and uniformity on the energy distribution. High manufacturing tolerance of the beam splitters is also analyzed, which allows for greater flexibility in the fabrication process. Compared with beam splitters based on single-groove grating, multi-port beam splitters based on double grooves show great performance and universality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Kayser, C. David, U. Flechsig, J. Krempasky, V. Schlott, R. Abela, X-ray grating interferometer for in situ and at-wavelength wavefront metrology. J. Synchrotron Radiat. 24(1), 150–162 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. L.R. Chen, J. Wang, B. Naghdi, I. Glesk, Subwavelength grating waveguide devices for telecommunications applications. IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019)

    Article  Google Scholar 

  3. T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N.M. Shigapova, A. Skochilov, Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer. Opt. Eng. 43(11), 2658–2665 (2004)

    Article  ADS  Google Scholar 

  4. G. Zhou, Z.H. Lim, Y. Qi, F.S. Chau, G. Zhou, Mems gratings and their applications. Int. J. Optomechatron. 15(1), 61–86 (2021)

    Article  ADS  Google Scholar 

  5. H. Tamiya, Y. Mitera, K. Taniguchi, H. Aoyama, K. Yamazaki, Development of a three-dimensional encoder for highly accurate positioning. J. Jpn. Soc. Precis. Eng. 85(10), 891–895 (2019)

    Article  Google Scholar 

  6. A. Othonos, K. Kalli, G.E. Kohnke, Fiber bragg gratings: fundamentals and applications in telecommunications and sensing. Phys. Today 53(5), 61–62 (2000)

    Article  ADS  Google Scholar 

  7. Y. Tachikawa, Spectral analysis of transmission echelon grating filters for photonic networks. Opt. Rev. 6(2), 131–138 (1999)

    Article  Google Scholar 

  8. E.S. Lee, J.Y. Lee, Symmetry exploitation of diffraction gratings to enhance the spectral resolution. J. Opt. Soc. Korea 15(3), 216–221 (2011)

    Article  Google Scholar 

  9. J. Kim, M.N. Miskiewicz, S. Serati, M.J. Escuti, Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration. J. Lightw. Technol. 33(10), 2068–2077 (2015)

    Article  ADS  Google Scholar 

  10. F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, C. Trono, Optical fibre gratings as tools for chemical and biochemical sensing. Anal. Bioanal. Chem. 402(1), 109–116 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. J. Marciante, N. Farmiga, J. Hirsh, M. Evans, H. Ta, Optical measurement of depth and duty cycle for binary diffraction gratings with subwavelength features. Appl. Opt. 42, 3234–3240 (2003)

    Article  PubMed  ADS  Google Scholar 

  12. H. Kocer, Y. Durna, H. Kurt, E. Ozbay, Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate. Opt. Lett. 45(13), 3521–3524 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. C. Wan, R. Yang, Y. Shi, G. Zheng, Z. Li, Visible-frequency meta-gratings for light steering, beam splitting and absorption tunable functionality. Opt. Express 27(26), 37318–37326 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84(23), 4780–4782 (2004)

    Article  CAS  ADS  Google Scholar 

  15. S. Yin, D. Zeng, Y. Chen, W. Huang, C. Zhang, W. Zhang, E. Yiwen, Optically controlled terahertz dynamic beam splitter with adjustable split ratio. Nanomaterials (Basel) 12(7), 1169 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. H. Huang, S. Ruan, T. Yang, P. Xu, Novel even beam splitters based on subwavelength binary simple periodic rectangular structure. Nano-Micro Lett. 7(2), 177–182 (2015)

    Article  Google Scholar 

  17. J. Hsu, C. Lee, R. Chen, A high-efficiency multi-beam splitter for optical pickups using ultra-precision manufacturing. Microelectron. Eng. 113, 74–79 (2014)

    Article  CAS  Google Scholar 

  18. L. Guo, J. Ma, Broad band beam splitter based on the double-groove fused silica grating. Optik 125(1), 232–234 (2014)

    Article  CAS  ADS  Google Scholar 

  19. F.J. Wen, P.S. Chung, Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure. Appl. Opt. 50(19), 3187–3190 (2011)

    Article  PubMed  ADS  Google Scholar 

  20. T. Nagatsuma, G. Ducournau, C.C. Renaud, Advances in terahertz communications accelerated by photonics. Nat. Photon. 10(6), 371–379 (2016)

    Article  CAS  ADS  Google Scholar 

  21. L. Tohmé, S. Blin, G. Ducournau, P. Nouvel, D. Coquillat, S. Hisatake, T. Nagatsuma, A. Pénarier, L. Varani, W. Knap, J.F. Lampin, Terahertz wireless communication using GaAs transistors as detectors. Electron. Lett. 50(4), 323–325 (2014)

    Article  ADS  Google Scholar 

  22. R.S. Nishtha, A.K. Yaduvanshi, A.K. Kushwaha, Pandit, Terahertz rectangular dra for high speed communication applications. J. Discrete Math. Sci. Cryptogr. 24(5), 1205–1214 (2021)

    Article  Google Scholar 

  23. V.Y. Fedorov, S. Tzortzakis, Powerful terahertz waves from long-wavelength infrared laser filaments. Light Sci. Appl. 9(1), 186 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. L. Wang, Terahertz imaging for breast cancer detection. Sensors (Basel) 21(19), 6465 (2021)

    Article  PubMed  ADS  Google Scholar 

  25. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, Y. Luo, Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Z. Lin, B. Wang, X. Xing, F. Zhang, J. Xue, J. Zhou, Polarization-sensitive terahertz reflective multi-channel beam separation by cascaded configuration. Results Phys. 28, 104702 (2021)

    Article  Google Scholar 

  27. Z. Huang, B. Wang, Multi-function beam control of terahertz wave by hybrid metamaterial. Laser Phys. 31(12), 126202 (2021)

    Article  CAS  ADS  Google Scholar 

  28. M.G. Moharam, D.A. Pommet, E.B. Grann, T.K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12(5), 1077–1086 (1995)

    Article  ADS  Google Scholar 

  29. J. Zheng, C. Zhou, B. Wang, F. Jijun, Beam splitting of low-contrast binary gratings under second Bragg angle incidence. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 25, 1075–1083 (2008)

    Article  PubMed  ADS  Google Scholar 

  30. W. Liu, G. Jin, Y. Xie, P. Sun, B. Zhou, W. Jia, J. Wang, C. Zhou, Broadband high-efficiency polarization-independent double-layer slanted grating for rgb colors. Opt. Commun. 488, 126864 (2021)

    Article  CAS  Google Scholar 

  31. Z. Huang, B. Wang, Z. Lin, K. Wen, Z. Meng, F. Zhang, Z. Nie, X. Xing, L. Chen, L. Lei, J. Zhou, Newly reflective bi-function beam splitter by SiO2 pencil-like arrays on silver plate. Optik 242, 167289 (2021)

    Article  CAS  ADS  Google Scholar 

  32. H. Li, T. Huang, L. Lu, Z. Hu, B. Yu, High-efficiency nine-port beam splitting output enabled by a dielectric lamellar sandwiched fused-silica grating. Opt. Laser Technol. 145, 10765 (2022)

    Article  Google Scholar 

  33. P. Koleják, G. Lezier, K. Postava, J.-F. Lampin, N. Tiercelin, M. Vanwolleghem, 360° polarization control of terahertz spintronic emitters using uniaxial feco/tbco2/feco trilayers. ACS Photon. 9(4), 1274–1285 (2022)

    Article  Google Scholar 

  34. J.A. Fülöp, S. Tzortzakis, T. Kampfrath, Laser-driven strong-field terahertz sources. Adv. Opt. Mater. 8(3), 1900681 (2019)

    Article  Google Scholar 

  35. Y. Xie, W. Jia, D. Zhao, Z. Ye, P. Sun, C. Xiang, J. Wang, C. Zhou, Traceable and long-range grating pitch measurement with picometer resolution. Opt. Commun. 476, 126316 (2020)

    Article  CAS  Google Scholar 

  36. Z. Xiong, B. Wang, J. Zhou, Triple-layer array splitter for zeroth-order suppressing under normal incidence. Optik 267, 169743 (2022)

    Article  ADS  Google Scholar 

  37. C. Fu, B. Wang, Z. Lin, Z. Huang, K. Wen, Z. Meng, Z. Nie, X. Xing, L. Chen, L. Lei, J. Zhou, Beam generator of 4-channel with zeroth order suppressed by reflective t-type grating. Mod. Phys. Lett. B 35(13), 2150218 (2021)

    Article  CAS  ADS  Google Scholar 

  38. C. Gao, B. Wang, Four equal-intensity laser output and physical analysis generated by reflective grating with a silver plate. Laser Phys. 30(2), 026203 (2020)

    Article  CAS  ADS  Google Scholar 

  39. J. Feng, C. Zhou, J. Zheng, H. Cao, P. Lv, Design and fabrication of a polarization-independent two-port beam splitter. Appl. Opt. 48(29), 5636–5641 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  40. L. Zhang, C. Li, J. Li, F. Zhang, L. Shi, Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication. Optoelectron. Adv. Mat. 1(6), 263–266 (2007)

    CAS  Google Scholar 

  41. S. Joseph, S. Sarkar, J. Joseph, Grating-coupled surface plasmon-polariton sensing at a flat metal-analyte interface in a hybrid-configuration. Acs Appl. Mater. Int. 12(41), 46519–46529 (2020)

    Article  CAS  Google Scholar 

  42. S. Sarkar, S. Poulose, P.K. Sahoo, J. Joseph, Flexible and stretchable guided-mode resonant optical sensor: Single-step fabrication on a surface engineered polydimethylsiloxane substrate. Osa Continuum. 1(4), 1277–1286 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

LL: Data curation, Formal analysis, Validation, Investigation, Writing—original draft. BW: Conceptualization, Methodology, Supervision, Project administration, Writing—review and editing. ZC: Formal analysis. HZ: Investigation. JL: Investigation.

Corresponding author

Correspondence to Bo Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, B., Cui, Z. et al. Double-ridge arrays metasurface for multifunctional splitter at terahertzs. Appl. Phys. B 130, 32 (2024). https://doi.org/10.1007/s00340-023-08168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08168-8

Navigation