Skip to main content
Log in

Maximizing the efficiency of intrapulse difference frequency generation by pulse shaping and recycling

  • Invited contribution
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Intrapulse Difference Frequency Generation (iDFG) is an interesting technique for generating femtosecond pulses in the Mid-Infrared (MIR) range with unique properties such as robust Carrier-Envelope Phase (CEP) stability. However, its efficiency is low compared to other techniques. In this paper, we describe an iDFG system operating within the 4–10 \(\upmu\)m range that features an original architecture to enhance efficiency. First, we introduce an interesting technique on the generation process. This approach involves polarization and spectral phase shaping techniques on the driving pulse to maximize the number of photons enrolled in the process. Second, we demonstrate that the polarization shaping allows further enhancement of efficiency by recycling the iDFG signal to pump a subsequent optical parametric amplification (OPA) stage. These two concepts and the associated parameters optimization are described into details, and supported by experimental results. Combined with a high-power Yb-fiber-based pump laser, these techniques allow to achieve record efficiencies, and generate \(\upmu\)J-level, few-cycle, tunable, CEP-stable pulses in the MIR at repetition rates above 100 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7(2), 138–141 (2011)

    Article  CAS  Google Scholar 

  2. P. Dombi, Z. Pápa, J. Vogelsang, S.V. Yalunin, M. Sivis, G. Herink, S. Schäfer, P. Groß, C. Ropers, C. Lienau, Strong-field nano-optics. Rev. Mod. Phys. 92(2), 025003 (2020)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  3. I. Pupeza, M. Huber, M. Trubetskov, W. Schweinberger, S.A. Hussain, C. Hofer, K. Fritsch, M. Poetzlberger, L. Vamos, E. Fill et al., Field-resolved infrared spectroscopy of biological systems. Nature 577(7788), 52–59 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. J.P. Ogilvie, K.J. Kubarych, Multidimensional electronic and vibrational spectroscopy: an ultrafast probe of molecular relaxation and reaction dynamics. Adv. At. Mol. Opt. Phy. 57, 249–321 (2009)

    Article  CAS  ADS  Google Scholar 

  5. P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011)

    Book  Google Scholar 

  6. M.K. Petti, J.P. Lomont, M. Maj, M.T. Zanni, Two-dimensional spectroscopy is being used to address core scientific questions in biology and materials science. J. Phys. Chem. B 122(6), 1771–1780 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B.M. Luther, K.M. Tracy, M. Gerrity, S. Brown, A.T. Krummel, 2D IR spectroscopy at 100 KHz utilizing a mid-IR opcpa laser source. Opt. Express 24(4), 4117–4127 (2016)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. P. Donaldson, G. Greetham, D. Shaw, A. Parker, M. Towrie, A 100 KHz pulse shaping 2d-IR spectrometer based on dual yb: Kgw amplifiers. J. Phys. Chem. A 122(3), 780–787 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. R. Fritzsch, P.M. Donaldson, G.M. Greetham, M. Towrie, A.W. Parker, M.J. Baker, N.T. Hunt, Rapid screening of dna-ligand complexes via 2D-IR spectroscopy and anova-pca. Anal. Chem. 90(4), 2732–2740 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. M. Seidel, X. Xiao, S.A. Hussain, G. Arisholm, A. Hartung, K.T. Zawilski, P.G. Schunemann, F. Habel, M. Trubetskov, V. Pervak et al., Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv. 4(4), 1526 (2018)

    Article  ADS  Google Scholar 

  11. S.B. Penwell, L. Whaley-Mayda, A. Tokmakoff, Single-stage MHz mid-IR opa using ligas 2 and a fiber laser pump source. Opt. Lett. 43(6), 1363–1366 (2018)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Z. Heiner, V. Petrov, M. Mero, Efficient, sub-4-cycle, 1-\(\mu\)m-pumped optical parametric amplifier at 10 \(\mu\)m based on baga 4 s 7. Opt. Lett. 45(20), 5692–5695 (2020)

    Article  PubMed  ADS  Google Scholar 

  13. R. Budriūnas, K. Jurkus, M. Vengris, A. Varanavičius, Long seed, short pump: converting yb-doped laser radiation to multi-\(\mu\)j few-cycle pulses tunable through 2.5–15 \(\mu\)m. Opt. Express 30(8), 13009–13023 (2022)

    Article  PubMed  ADS  Google Scholar 

  14. B.-H. Chen, E. Wittmann, Y. Morimoto, P. Baum, E. Riedle, Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in ligas 2. Opt. Express 27(15), 21306–21318 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. S. Qu, H. Liang, K. Liu, X. Zou, W. Li, Q.J. Wang, Y. Zhang, 9 \(\mu\)m few-cycle optical parametric chirped-pulse amplifier based on ligas 2. Opt. Lett. 44(10), 2422–2425 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Z. Heiner, V. Petrov, V.L. Panyutin, V.V. Badikov, K. Kato, K. Miyata, M. Mero, Efficient generation of few-cycle pulses beyond 10 \(\mu\)m from an optical parametric amplifier pumped by a 1-\(\mu\)m laser system. Sci. Rep. 12(1), 5082 (2022)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. A. Bonvalet, M. Joffre, J. Martin, A. Migus, Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 mhz repetition rate. Appl. Phys. Lett. 67(20), 2907–2909 (1995)

    Article  CAS  ADS  Google Scholar 

  18. R. Kaindl, D. Smith, M. Joschko, M. Hasselbeck, M. Woerner, T. Elsaesser, Femtosecond infrared pulses tunable from 9 to 18?? \(\mu\)m at an 88-MHz repetition rate. Opt. Lett. 23(11), 861–863 (1998)

    Article  CAS  PubMed  ADS  Google Scholar 

  19. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger et al., High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photonics 9(11), 721–724 (2015)

    Article  CAS  ADS  Google Scholar 

  20. B.-H. Chen, T. Nagy, P. Baum, Efficient middle-infrared generation in ligas 2 by simultaneous spectral broadening and difference-frequency generation. Opt. Lett. 43(8), 1742–1745 (2018)

    Article  CAS  PubMed  ADS  Google Scholar 

  21. J. Liu, J. Ma, D. Lu, X. Gu, Z. Cui, P. Yuan, J. Wang, G. Xie, H. Yu, H. Zhang et al., Few-cycle pulses tunable from 3 to 7 \(\mu\)m via intrapulse difference-frequency generation in oxide lgn crystals. Opt. Lett. 45(20), 5728–5731 (2020)

    Article  PubMed  ADS  Google Scholar 

  22. A. Weigel, P. Jacob, D. Gröters, T. Buberl, M. Huber, M. Trubetskov, J. Heberle, I. Pupeza, Ultra-rapid electro-optic sampling of octave-spanning mid-infrared waveforms. Opt. Express 29(13), 20747–20764 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. N. Kanda, N. Ishii, J. Itatani, R. Matsunaga, Optical parametric amplification of phase-stable terahertz-to-mid-infrared pulses studied in the time domain. Opt. Express 29(3), 3479–3489 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, K.F. Mak, Broadband mid-infrared coverage (2–17 \(\mu\)m) with few-cycle pulses via cascaded parametric processes. Opt. Lett. 44(10), 2566–2569 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  25. T. Nakamura, V.R. Badarla, K. Hashimoto, P.G. Schunemann, T. Ideguchi, Simple approach to broadband mid-infrared pulse generation with a mode-locked yb-doped fiber laser. Opt. Lett. 47(7), 1790–1793 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  26. A.S. Kowligy, H. Timmers, A.J. Lind, S. Karlen, F. Cruz, P.G. Schunemann, J. Biegert, S.A. Diddams, Near-single-cycle long-wave infrared pulses for coherent linear and nonlinear optics. In: CLEO: Science and Innovations, pp. 4–5 (2019). Optica Publishing Group

  27. O. Novák, P.R. Krogen, T. Kroh, T. Mocek, F.X. Kärtner, K.-H. Hong, Femtosecond 8.5 \(\mu\)m source based on intrapulse difference-frequency generation of 2.1 \(\mu\)m pulses. Opt. Lett. 43(6), 1335–1338 (2018)

    Article  PubMed  ADS  Google Scholar 

  28. C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza et al., Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light: Sci. Appl. 7(1), 94 (2018)

    Article  PubMed  ADS  Google Scholar 

  29. T. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. Gessner et al., Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region. Opt. Lett. 44(7), 1730–1733 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  30. S. Vasilyev, I.S. Moskalev, V.O. Smolski, J.M. Peppers, M. Mirov, A.V. Muraviev, K. Zawilski, P.G. Schunemann, S.B. Mirov, K.L. Vodopyanov et al., Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-\(\mu\)m pulses. Optica 6(1), 111–114 (2019)

    Article  CAS  ADS  Google Scholar 

  31. J. Zhang, Q. Wang, J. Hao, H. Liu, J. Yao, Z. Li, J. Liu, K.F. Mak, Broadband, few-cycle mid-infrared continuum based on the intra-pulse difference frequency generation with bgse crystals. Opt. Express 28(25), 37903–37909 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  32. K. Liu, H. Liang, S. Qu, W. Li, X. Zou, Y. Zhang, Q.J. Wang, High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 \(\mu\)m. Opt. Express 27(26), 37706–37713 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  33. P. Steinleitner, N. Nagl, M. Kowalczyk, J. Zhang, V. Pervak, C. Hofer, A. Hudzikowski, J. Sotor, A. Weigel, F. Krausz et al., Single-cycle infrared waveform control. Nat. Photonics 16(7), 512–518 (2022)

    Article  CAS  ADS  Google Scholar 

  34. H. Kassab, S. Gröbmeyer, W. Schweinberger, C. Hofer, P. Steinleitner, M. Högner, T. Amotchkina, D. Gerz, M. Knorr, R. Huber et al., In-line synthesis of multi-octave phase-stable infrared light. Opt. Express 31(15), 24862–24874 (2023)

    Article  CAS  PubMed  ADS  Google Scholar 

  35. L. Lavenu, M. Natile, F. Guichard, X. Délen, M. Hanna, Y. Zaouter, P. Georges, High-power two-cycle ultrafast source based on hybrid nonlinear compression. Opt. Express 27(3), 1958–1967 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  36. K.J. Kubarych, M. Joffre, A. Moore, N. Belabas, D.M. Jonas, Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer. Opt. Lett. 30(10), 1228–1230 (2005)

    Article  PubMed  ADS  Google Scholar 

  37. W. Wang, H. Wu, C. Liu, B. Sun, H. Liang, Multigigawatt 50 fs yb: Calgo regenerative amplifier system with 11 w average power and mid-infrared generation. Photonics Res. 9(8), 1439–1445 (2021)

    Article  Google Scholar 

  38. R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76(22), 3191–3193 (2000)

    Article  CAS  ADS  Google Scholar 

  39. Q. Bournet, F. Guichard, M. Natile, Y. Zaouter, M. Joffre, A. Bonvalet, I. Pupeza, C. Hofer, F. Druon, M. Hanna, P. Georges, Enhanced intrapulse difference frequency generation in the mid-infrared by a spectrally dependent polarization state. Opt. Lett. 47(2), 261–264 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  40. M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, H. Crespo, Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt. Express 20(1), 688–697 (2012)

    Article  PubMed  ADS  Google Scholar 

  41. J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, J. Zuegel, Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers. Opt. Express 19(18), 16797–16808 (2011)

    Article  CAS  PubMed  ADS  Google Scholar 

  42. C. Manzoni, M. Först, H. Ehrke, A. Cavalleri, Single-shot detection and direct control of carrier phase drift of midinfrared pulses. Opt. Lett. 35(5), 757–759 (2010)

    Article  CAS  PubMed  ADS  Google Scholar 

  43. T. Yamakawa, N. Sono, T. Kitao, T. Morimoto, N. Kida, T. Miyamoto, H. Okamoto, Long-term stabilization of carrier envelope phases of mid-infrared pulses for the precise detection of phase-sensitive responses to electromagnetic waves. AIP Adv. 10(2), 025311 (2020)

    Article  CAS  ADS  Google Scholar 

  44. Q. Bournet, M. Jonusas, A. Zheng, F. Guichard, M. Natile, Y. Zaouter, M. Joffre, A. Bonvalet, F. Druon, M. Hanna, P. Georges, Inline amplification of mid-infrared intrapulse difference frequency generation. Opt. Lett. 47(19), 4885–4888 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Q. Bournet, M. Natile, M. Jonusas, F. Guichard, Y. Zaouter, M. Joffre, A. Bonvalet, F. Druon, M. Hanna, P. Georges, Intensity noise in difference frequency generation-based tunable femtosecond mir sources. Opt. Express 31(8), 12693–12702 (2023)

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Agence Nationale de la Recherche (ANR) through the projects ANR MIRTHYX (Grant ID: ANR-19-CE30-0001-MIRTHYX) and the Labex PALM (Grant ID: ANR-10-LABX-0039-PALM).

Author information

Authors and Affiliations

Authors

Contributions

Quentin Bournet and Frédéric Druon wrote the main manuscript text and Quentin Bournet. prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fréderic Druon.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bournet, Q., Jonusas, M., Guichard, F. et al. Maximizing the efficiency of intrapulse difference frequency generation by pulse shaping and recycling. Appl. Phys. B 130, 33 (2024). https://doi.org/10.1007/s00340-023-08162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08162-0

Navigation