Skip to main content
Log in

Holographic Phase Transitions in \((2+1)\)-Dimensional Black Hole Spacetimes in NMG

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we aim at the question of holographic phase transitions in two-dimensional systems with Lifshitz scaling. We consider the gravity side candidate for a dual description as the black hole solution of new massive gravity (NMG) with Lifshitz scaling. We discuss the effects due to the Lifshitz scaling in the AGGH (Ayon-Beato-Garbarz-Giribet-Hassaïne) solution in comparison with the BTZ (Bañados-Teitelboim-Zanelli) black hole. Likewise, we compute the order parameter and it indicates a second-order phase transition in a \((1+1)\) dimension Lifshitz boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

Notes

  1. We omit the hat notation.

  2. We started varying \(E_+\) from 0 to 10 and later, we changed in order to see at least five curves.

  3. We noticed that we needed smaller steps in \(\Psi _+\) for the \(<O_1>\) and \(<O_2>\) curves to be smooth.

References

  1. J. Maldacena, The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). https://doi.org/10.1023/A:1026654312961. arXiv:hep-th/9711200

  2. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

  3. I.R. Klebanov, E. Witten, AdS/CFT correspondence and symmetry breaking. Nucl. Phys. B 556, 89–114 (1999). https://doi.org/10.1016/S0550-3213(99)00387-9. arXiv:hep-th/9905104

  4. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101(3), 031601 (2008). https://doi.org/10.1103/PhysRevLett.101.031601. arXiv:0803.3295 [hep-th]

  5. Q. Pan, B. Wang, E. Papantonopoulos et al., Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 81(10), 106007 (2010). https://doi.org/10.1103/PhysRevD.81.106007. arXiv:0912.2475 [hep-th]

  6. H. Liu, J. McGreevy, D. Vegh, Non-Fermi liquids from holography. Phys. Rev. D 83(6), 065029 (2011). https://doi.org/10.1103/PhysRevD.83.065029. arXiv:0903.2477 [hep-th]

  7. S.A. Hartnoll, J. Polchinski, E. Silverstein et al., Towards strange metallic holography. J. High Energy Phys. 4, 120 (2010). https://doi.org/10.1007/JHEP04(2010)120. arXiv:0912.1061 [hep-th]

  8. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry. Phys. Rev. D 78(4), 046003 (2008). https://doi.org/10.1103/PhysRevD.78.046003. arXiv:0804.3972 [hep-th]

  9. S. Kachru, X. Liu, M. Mulligan, Gravity duals of Lifshitz-like fixed points. Phys. Rev. D 78(10), 106005 (2008). https://doi.org/10.1103/PhysRevD.78.106005. arXiv:0808.1725 [hep-th]

  10. K. Balasubramanian, J. McGreevy, Gravity duals for nonrelativistic conformal field theories. Phys. Rev. Lett. 101(6), 061601 (2008). https://doi.org/10.1103/PhysRevLett.101.061601. arXiv:0804.4053 [hep-th]

  11. E. Ayón-Beato, A. Garbarz, G. Giribet et al., Lifshitz black hole in three dimensions. Phys. Rev. D 80(10), 104029 (2009). https://doi.org/10.1103/PhysRevD.80.104029. arXiv:0909.1347 [hep-th]

  12. B. Cuadros-Melgar, J. de Oliveira, C.E. Pellicer, Stability analysis and area spectrum of three-dimensional Lifshitz black holes. Phys. Rev. D 85(2), 024014 (2012). https://doi.org/10.1103/PhysRevD.85.024014. arXiv:1110.4856 [hep-th]

  13. E. Abdalla, J. de Oliveira, A. Lima-Santos et al., Three dimensional Lifshitz black hole and the Korteweg-de Vries equation. Phys. Lett. B 709, 276–279 (2012). https://doi.org/10.1016/j.physletb.2012.02.026. arXiv:1108.6283 [hep-th]

  14. E.A. Bergshoeff, O. Hohm, P.K. Townsend, Massive gravity in three dimensions. Phys. Rev. Lett. 102(20), 201301 (2009). https://doi.org/10.1103/PhysRevLett.102.201301. arXiv:0901.1766 [hep-th]

  15. M. Fierz, W. Pauli, On relativistic wave-equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. Lond. A 173, 211 (1939). https://doi.org/10.1098/rspa.1939.0140

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Banados, C. Teitelboim, J. Zanelli, Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69, 1849–1851 (1992). https://doi.org/10.1103/PhysRevLett.69.1849. arXiv:hep-th/9204099

  17. G. Clement, Spinning charged BTZ black holes and self-dual particle-like solutions. Phys. Lett. B 367, 70–74 (1996)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  18. R. Gregory, S. Kanno, J. Soda, Holographic superconductors with higher curvature corrections. J. High Energy Phys. 10, 010 (2009). https://doi.org/10.1088/1126-6708/2009/10/010. arXiv:0907.3203 [hep-th]

  19. K.Y. Kim, M. Taylor, Holographic d-wave superconductors. JHEP 08, 112 (2013). https://doi.org/10.1007/JHEP08(2013)112. arXiv:1304.6729 [hep-th]

  20. E. Abdalla, C.E. Pellicer, J. de Oliveira et al., Phase transitions and regions of stability in reissner-nordström holographic superconductors. Phys. Rev. D 82, 124033 (2010). https://doi.org/10.1103/PhysRevD.82.124033

    Article  CAS  ADS  Google Scholar 

  21. S. Coleman, There are no goldstone bosons in two dimensions. Commun. Math. Phys. 31(4), 259–264 (1973). https://doi.org/10.1007/BF01646487

    Article  MathSciNet  ADS  Google Scholar 

  22. N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966). https://doi.org/10.1103/PhysRevLett.17.1133

    Article  CAS  ADS  Google Scholar 

  23. P.C. Hohenberg, Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967). https://doi.org/10.1103/PhysRev.158.383

    Article  CAS  ADS  Google Scholar 

  24. D. Anninos, S.A. Hartnoll, N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem. Phys. Rev. D 82(6), 066008 (2010). https://doi.org/10.1103/PhysRevD.82.066008. arXiv:1005.1973 [hep-th]

  25. V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group i. classical systems. Sov. Phys. JETP (1971). 32:493

  26. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6(7):1181 (1973). http://stacks.iop.org/0022-3719/6/i=7/a=010

  27. E. Abdalla, B. Berg, P. Weisz, More about the s-matrix of the chiral su(n) thirring model. Nucl. Phys. B 157(3), 387–391 (1979). https://doi.org/10.1016/0550-3213(79)90110-X

    Article  ADS  Google Scholar 

  28. C.P. Herzog, Lectures on holographic superfluidity and superconductivity. J. Phys. A Math. Theor. 42(34):343001 (2009). http://stacks.iop.org/1751-8121/42/i=34/a=343001

  29. P. Kraus, Lectures on black holes and the AdS(3) / CFT(2) correspondence. LectNotes Phys. 755:193–247 (2008). arXiv:hep-th/0609074 [hep-th]

Download references

Acknowledgements

We would like to thank Bin Wang and Eleftherios Papantonopoulos for useful discussions.

Funding

This work has been supported by FAPESP, FAPEMIG, and CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

J.O., E.A., and A.B.P. proposed the idea of the work; J.O., E.A., and A.B.P. wrote the main manuscript text, J.O. and A.B.P. did the analytic calculations, C.E.P. did the numerical calculations and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Alan Bendasoli Pavan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, E., de Oliveira, J., Pavan, A.B. et al. Holographic Phase Transitions in \((2+1)\)-Dimensional Black Hole Spacetimes in NMG. Braz J Phys 54, 50 (2024). https://doi.org/10.1007/s13538-024-01429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01429-7

Keywords

Navigation