Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Nano-Biocomposites: A Versatile Combination of Nanocomposites and Biopolymers for the Synthesis of Heterocycles via Multicomponent Reactions

Author(s): Archana Rajmane and Arjun Kumbhar*

Volume 28, Issue 4, 2024

Published on: 31 January, 2024

Page: [241 - 285] Pages: 45

DOI: 10.2174/0113852728268779240102101311

Price: $65

Abstract

Organic natural materials like chitosan, cellulose, starch, agarose, and alginate possess unique structures that are useful in creating advanced nanostructured materials. These materials are highly useful in catalysis because of their numerous functional groups and catalytic properties. They can also be combined with inorganic materials to create "nano- Biocomposites" with specialized properties that can be utilized as catalysts in multicomponent reactions. This review provides an overview of the use of nano-Biocomposites in multicomponent reactions (MCRs).

Keywords: Biopolymers, nano-Biocomposites, multicomponent reactions, biomaterials, catalysis, organic natural materials.

Next »
[1]
Petrosko, S.H.; Johnson, R.; White, H.; Mirkin, C.A. Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc., 2016, 138(24), 7443-7445.
[http://dx.doi.org/10.1021/jacs.6b05393] [PMID: 27329225]
[2]
Kumbhar, A.; Salunkhe, R. Recent advances in biopolymer supported palladium in organic synthesis. Curr. Org. Chem., 2015, 19(21), 2075-2121.
[http://dx.doi.org/10.2174/1385272819666150505185843]
[3]
Javanbakht, S.; Shaabani, A. Multicomponent reactions-based modified/functionalized materials in the biomedical platforms. ACS Appl. Bio Mater., 2020, 3(1), 156-174.
[http://dx.doi.org/10.1021/acsabm.9b00799] [PMID: 35019432]
[4]
de Moraes Crizel, T.; de Oliveira Rios, A.; Alves, D. Active food packaging prepared with chitosan and olive pomace. Food Hydrocoll., 2018, 74, 139-150.
[http://dx.doi.org/10.1016/j.foodhyd.2017.08.007]
[5]
Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[6]
Mousavi, H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int. J. Biol. Macromol., 2021, 186, 1003-1166.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.123] [PMID: 34174311]
[7]
Phan, T.T.V.; Phan, D.T.; Cao, X.T.; Huynh, T.C.; Oh, J. Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications. Nanomaterials, 2021, 11(2), 273.
[http://dx.doi.org/10.3390/nano11020273] [PMID: 33494225]
[8]
Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From fundamentals to advanced applications. Front Chem., 2020, 8, 392.
[http://dx.doi.org/10.3389/fchem.2020.00392] [PMID: 32435633]
[9]
Torres, F.G.; De-la-Torre, G.E. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int. J. Biol. Macromol., 2022, 194, 289-305.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.187] [PMID: 34863968]
[10]
Gharib, R.; Greige-Gerges, H.; Fourmentin, S.; Charcosset, C.; Auezova, L. Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge. Carbohydr. Polym., 2015, 129, 175-186.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.048] [PMID: 26050903]
[11]
Dalal, D.S.; Patil, D.R.; Tayade, Y.A. β‐Cyclodextrin: A green and efficient supramolecular catalyst for organic transformations. Chem. Rec., 2018, 18(11), 1560-1582.
[http://dx.doi.org/10.1002/tcr.201800016] [PMID: 29855139]
[12]
Pettignano, A.; Aguilera, D.A.; Tanchoux, N.; Bernardi, L.; Quignard, F. Alginate: A versatile biopolymer for functional advanced materials for catalysis. Stud. Surf. Sci. Catal., 2019, 178, 357-375.
[http://dx.doi.org/10.1016/B978-0-444-64127-4.00017-3]
[13]
Zucca, P.; Fernandez-Lafuente, R.; Sanjust, E. Agarose and its derivatives as supports for enzyme immobilization. Molecules, 2016, 21(11), 1577.
[http://dx.doi.org/10.3390/molecules21111577] [PMID: 27869778]
[14]
Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Moradi, P. Copper and nickel immobilized on cytosine@MCM‐41: As highly efficient, reusable and organic-inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2020, 34(11), e5919.
[http://dx.doi.org/10.1002/aoc.5919]
[15]
Jabbari, A.; Moradi, P.; Tahmasbi, B. Synthesis of tetrazoles catalyzed by a new and recoverable nanocatalyst of cobalt on modified boehmite NPs with 1,3-bis(pyridin-3-ylmethyl)thiourea. RSC Adv., 2023, 13(13), 8890-8900.
[http://dx.doi.org/10.1039/D2RA07510E] [PMID: 36936843]
[16]
dos Santos, J.A.; de Castro, P.P.; de Oliveira, K.T.; Brocksom, T.J.; Amarante, G.W. Multicomponent reactions applied to total synthesis of biologically active molecules: A short review. Curr. Top. Med. Chem., 2023, 23(11), 990-1003.
[http://dx.doi.org/10.2174/1568026623666230403102437] [PMID: 37016527]
[17]
Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat., 2021, 31(3), 267-289.
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
[18]
Koolivand, M.; Nikoorazm, M.; Ghorbani-Choghamarani, A.; Azadbakht, R.; Tahmasbi, B. Ni-citric acid coordination polymer as a practical catalyst for multicomponent reactions. Sci. Rep., 2021, 11(1), 24475.
[http://dx.doi.org/10.1038/s41598-021-03857-w] [PMID: 34963682]
[19]
Moradi, P.; Hajjami, M. Magnetization of biochar nanoparticles as a novel support for fabrication of organo nickel as a selective, reusable and magnetic nanocatalyst in organic reactions. New J. Chem., 2021, 45(6), 2981-2994.
[http://dx.doi.org/10.1039/D0NJ04990E]
[20]
Rezaei, A.; Ghorbani-Choghamarani, A.; Tahmasbi, B. Synthesis and characterization of nickel metal-organic framework including 4,6-diamino-2-mercaptopyrimidine and its catalytic application in organic reactions. Catal. Lett., 2023, 153(7), 2005-2017.
[http://dx.doi.org/10.1007/s10562-022-04135-8]
[21]
Darabi, M.; Nikoorazm, M.; Tahmasbi, B.; Ghorbani-Choghamarani, A. Immobilization of Ni(II) complex on the surface of mesoporous modified-KIT-6 as a new, reusable and highly efficient nanocatalyst for the synthesis of tetrazole and pyranopyrazole derivatives. RSC Adv., 2023, 13(18), 12572-12588.
[http://dx.doi.org/10.1039/D2RA08269A] [PMID: 37101952]
[22]
Ghorbani-Choghamarani, A.; Heidarnezhad, Z.; Tahmasbi, B.; Azadi, G. TEDETA@BNPs as a basic and metal free nanocatalyst for Knoevenagel condensation and Hantzsch reaction. J. Indian Chem. Soc., 2018, 15(10), 2281-2293.
[http://dx.doi.org/10.1007/s13738-018-1417-9]
[23]
Ghorbani-Choghamarani, A.; Tahmasbi, B.; Moradi, Z. S‐Benzylisothiourea complex of palladium on magnetic nanoparticles: A highly efficient and reusable nanocatalyst for synthesis of polyhydroquinolines and Suzuki reaction. Appl. Organomet. Chem., 2017, 31(8), e3665.
[http://dx.doi.org/10.1002/aoc.3665]
[24]
Ghorbani-Choghamarani, A.; Zolfigol, M.A.; Hajjami, M.; Goudarziafshar, H.; Nikoorazm, M.; Yousefi, S.; Tahmasbi, B. Nano aluminium nitride as a solid source of ammonia for the preparation of hantzsch 1,4-dihydropyridines and bis-(1,4-dihydropyridines) in water via one pot multicomponent reaction. J. Braz. Chem. Soc., 2011, 22(3), 525-531.
[http://dx.doi.org/10.1590/S0103-50532011000300016]
[25]
Tahmasbi, B.; Nikoorazm, M.; Moradi, P.; Abbasi Tyula, Y. A Schiff base complex of lanthanum on modified MCM-41 as a reusable nanocatalyst in the homoselective synthesis of 5-substituted 1H-tetrazoles. RSC Adv., 2022, 12(53), 34303-34317.
[http://dx.doi.org/10.1039/D2RA05413B] [PMID: 36545578]
[26]
Moradi, P.; Kikhavani, T.; Abbasi Tyula, Y. A new samarium complex of 1,3-bis(pyridin-3-ylmethyl)thiourea on boehmite nanoparticles as a practical and recyclable nanocatalyst for the selective synthesis of tetrazoles. Sci. Rep., 2023, 13(1), 5902.
[http://dx.doi.org/10.1038/s41598-023-33109-y] [PMID: 37041186]
[27]
Moradi, P.; Zarei, B.; Abbasi Tyula, Y.; Nikoorazm, M. Novel neodymium complex on MCM‐41 magnetic nanocomposite as a practical, selective, and returnable nanocatalyst in the synthesis of tetrazoles with antifungal properties in agricultural. Appl. Organomet. Chem., 2023, 37(4), e7020.
[http://dx.doi.org/10.1002/aoc.7020]
[28]
Tyula, Y.A.; Moradi, P.; Nikoorazm, M. A new neodymium complex on boehmite nanoparticles with 1,3‐Bis(pyridine‐3‐ylmethyl)thiourea as a practical and reusable nanocatalyst for the chemoselective synthesis of tetrazoles. ChemistrySelect, 2023, 8(24), e202301674.
[http://dx.doi.org/10.1002/slct.202301674]
[29]
Kikhavani, T.; Moradi, P.; Mashari-Karir, M.; Naji, J. A new copper Schiff‐base complex of 3,4‐diaminobenzophenone stabilized on magnetic MCM‐41 as a homoselective and reusable catalyst in the synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2022, 36(12), e6895.
[http://dx.doi.org/10.1002/aoc.6895]
[30]
Na, Y.H.; Hong, S.H.; Lee, J.H.; Park, W.K.; Baek, D.J.; Koh, H.Y.; Cho, Y.S. Novel quinazolinone derivatives as 5-HT7 receptor ligands. Bioorg. Med. Chem., 2008, 16(5), 2570-2578.
[31]
Badolato, M.; Aiello, F.; Neamati, N. 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv., 2018, 8(37), 20894-20921.
[http://dx.doi.org/10.1039/C8RA02827C] [PMID: 35542353]
[32]
Ramesh, K.; Karnakar, K.; Satish, G.; Anil Kumar, B.S.P.; Nageswar, Y.V.D. A concise aqueous phase supramolecular synthesis of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one derivatives. Tetrahedron Lett., 2012, 53(51), 6936-6939.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.029]
[33]
Wu, J.; Du, X.; Ma, J.; Zhang, Y.; Shi, Q.; Luo, L.; Song, B.; Yang, S.; Hu, D. Preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media with β-cyclodextrin-SO3H as a recyclable catalyst. Green Chem., 2014, 16(6), 3210-3217.
[http://dx.doi.org/10.1039/C3GC42400F]
[34]
Maleki, A.; Aghaei, M.; Ghamari, N.; Kamalzare, M. Efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones in the presence of ferrite/chitosan as a green and reusable nanocatalyst. Int. J. Nanosci. Nanotechnol., 2016, 12(4), 215-222.
[35]
Mirjalili, B.B.F.; Zaghaghi, Z.; Monfared, A. Synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones in the presence of Fe3O4@nano‐cellulose-OPO3H as a bio‐based magnetic nanocatalyst. J. Chin. Chem. Soc., 2020, 67(2), 197-201.
[http://dx.doi.org/10.1002/jccs.201900264]
[36]
Mirjalili, B.B.F.; Bamoniri, A.; Azad, S. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by nano-Fe3O4/TiCl2/cellulose as a bio-based magnetic catalyst. J. Indian Chem. Soc., 2017, 14(1), 47-55.
[http://dx.doi.org/10.1007/s13738-016-0956-1]
[37]
Babaei, E.; Bi, B.; Mirjalili, F. Fe3O4@nano-Dextrin/Ti(IV) as a bio-based magnetic nano-catalyst for facile synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. Iran. J. Catal., 2020, 10(3), 219-226.
[38]
Hasanpour Galehban, M.; Zeynizadeh, B.; Mousavi, H. Ni II NPs entrapped within a matrix of L-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: A new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv., 2022, 12(26), 16454-16478.
[http://dx.doi.org/10.1039/D1RA08454B] [PMID: 35754864]
[39]
Patil, D.R.; Ingole, P.G.; Singh, K.; Dalal, D.S. Inclusion complex of Isatoic anhydride with β-cyclodextrin and supramolecular one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in aqueous media. J. Incl. Phenom. Macrocycl. Chem., 2013, 76(3-4), 327-332.
[http://dx.doi.org/10.1007/s10847-012-0203-z]
[40]
Mitra, B.; Chandra Pariyar, G.; Ghosh, P. β-Cyclodextrin: A supramolecular catalyst for metal-free approach towards the synthesis of 2-amino-4,6-diphenylnicotinonitriles and 2,3-dihydroquinazolin-4(1H)-one. RSC Adv., 2021, 11(3), 1271-1281.
[http://dx.doi.org/10.1039/D0RA09562A] [PMID: 35424112]
[41]
Maghsoodlou, M.T.; Khorshidi, N.; Mousavi, M.R.; Hazeri, N.; Habibi-Khorassani, S.M. Starch solution as an efficient and environment-friendly catalyst for one-pot synthesis of β-aminoketones and 2,3-dihydroquinazolin-4(1H)-ones in EtOH. Res. Chem. Intermed., 2015, 41(10), 7497-7508.
[http://dx.doi.org/10.1007/s11164-014-1839-7]
[42]
Shaterian, H.R.; Rigi, F. New applications of cellulose)'O3H as a bio-supported and biodegradable catalyst for the one-pot synthesis of some three-component reactions. Res. Chem. Intermed., 2014, 40(8), 2983-2999.
[http://dx.doi.org/10.1007/s11164-013-1145-9]
[43]
Shaabani, A.; Afshari, R.; Hooshmand, S.E. Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: A bio-nanoreactor with extremely high activity toward click-multi-component reactions. New J. Chem., 2017, 41(16), 8469-8481.
[http://dx.doi.org/10.1039/C7NJ01150D]
[44]
Bakhtiarian, M.; Khodaei, M.M. Synthesis of 2,3-dihydro-4(1H) quinazolinones using a magnetic pectin-supported deep eutectic solvent. Colloids Surf. A Physicochem. Eng. Asp., 2022, 641, 128569.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128569]
[45]
Moradi, A.; Heydari, R.; Maghsoodlou, M.T. Agar: a novel, efficient, and biodegradable catalyst for the one-pot three-component and green synthesis of 2,3-dihydroquinazolin-4(1H)-one, 4H-pyrimidobenzothiazole and 2-aminobenzothiazolomethylnaphthol derivatives. Res. Chem. Intermed., 2015, 41(10), 7377-7391.
[http://dx.doi.org/10.1007/s11164-014-1818-z]
[46]
van Beurden, K.; de Koning, S.; Molendijk, D.; van Schijndel, J. The Knoevenagel reaction: A review of the unfinished treasure map to forming carbon-carbon bonds. Green Chem. Lett. Rev., 2020, 13(4), 349-364.
[http://dx.doi.org/10.1080/17518253.2020.1851398]
[47]
Shinde, S.; Rashinkar, G.; Kumbhar, A.; Kamble, S.; Salunkhe, R. Facile knoevenagel and domino Knoevenagel/Michael reactions using gel‐entrapped base catalysts. Helv. Chim. Acta, 2011, 94(11), 1943-1951.
[http://dx.doi.org/10.1002/hlca.201100133]
[48]
Mousazadeh, M.I.; Shirini, F.; Safarpoor, N.L.M. Introduction of agar-entrapping as a novel strategy to improve the catalytic activity of moisture-absorbing acidic ionic liquids: A case study in the synthesis of 5-arylidene barbituric acids and pyrano[2,3-d]Pyrimidinones. Polycycl. Aromat. Compd., 2022, 42(5), 2471-2482.
[http://dx.doi.org/10.1080/10406638.2020.1836003]
[49]
Alirezvani, Z.; Dekamin, M.G.; Davoodi, F.; Valiey, E. Melamine‐functionalized chitosan: A new bio‐based reusable bifunctional organocatalyst for the synthesis of cyanocinnamonitrile intermediates and densely functionalized nicotinonitrile derivatives. ChemistrySelect, 2018, 3(37), 10450-10463.
[http://dx.doi.org/10.1002/slct.201802010]
[50]
Anbu, N.; Hariharan, S.; Dhakshinamoorthy, A. Knoevenagel-Doebner condensation promoted by chitosan as a reusable solid base catalyst. Molecular Catalysis, 2020, 484, 110744.
[http://dx.doi.org/10.1016/j.mcat.2019.110744]
[51]
Zare, E.; Rafiee, Z. Cellulose stabilized Fe3O4 and carboxylate‐imidazole and Co‐based MOF growth as an exceptional catalyst for the Knoevenagel reaction. Appl. Organomet. Chem., 2020, 34(4), e5516.
[http://dx.doi.org/10.1002/aoc.5516]
[52]
Shelke, K.F.; Sapkal, S.B.; Niralwad, K.S.; Shingate, B.B.; Shingare, M.S. Cellulose sulphuric acid as a biodegradable and reusable catalyst for the knoevenagel condensation. Cent. Eur. J. Chem., 2010, 8(1), 12-18.
[53]
Patil, D.R.; Dalal, D.S. Biomimetic approach for the synthesis of N,N′-diarylsubstituted formamidines catalyzed by β-cyclodextrin in water. Chin. Chem. Lett., 2012, 23(10), 1125-1128.
[http://dx.doi.org/10.1016/j.cclet.2012.08.003]
[54]
Hernawan; Purwono, B.; Triyono; Hanafi, M. Amino-functionalized porous chitosan as a solid base catalyst for solvent-free synthesis of chalcones. J. Taiwan Inst. Chem. Eng., 2022, 134, 104354.
[55]
Sharma, A.; Deep, A.; Marwaha, M.G.; Marwaha, R.K. Quinoxaline: A chemical moiety with spectrum of interesting biological activities. Mini Rev. Med. Chem., 2022, 22(6), 927-948.
[http://dx.doi.org/10.2174/1389557521666210927123831] [PMID: 34579634]
[56]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[57]
Durga, V.; Yadavalli, N.; Katla, R. An overview of quinoxaline synthesis by green methods: Recent reports. Phys. Sci. Rev., 2022, 8(10), 3323-3392.
[58]
Shaabani, A.; Rezayan, A.H.; Behnam, M.; Heidary, M. Green chemistry approaches for the synthesis of quinoxaline derivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid. C. R. Chim., 2009, 12(12), 1249-1252.
[http://dx.doi.org/10.1016/j.crci.2009.01.006]
[59]
Kuarm, B.S.; Crooks, P.A.; Rajitha, B. An expeditious synthesis of quinoxalines by using biodegradable cellulose sulfuric acid as a solid acid catalyst. Green Chem. Lett. Rev., 2013, 6(3), 228-232.
[http://dx.doi.org/10.1080/17518253.2012.752041]
[60]
Khan, M.U.; Siddiqui, S.; Siddiqui, Z.N. Novel ionic liquid-functionalized chitosan [DSIM][AlCl3]x@CS: Synthesis, characterization, and catalytic application for preparation of substituted pyrazine derivatives. ACS Omega, 2019, 4(4), 7586-7595.
[http://dx.doi.org/10.1021/acsomega.9b00301] [PMID: 31459852]
[61]
Mofakham, H.; Hezarkhani, Z.; Shaabani, A. Cellulose-SO3H as a biodegradable solid acid catalyzed one-pot three-component Ugi reaction: Synthesis of α-amino amide, 3,4-dihydroquinoxalin-2-amine, 4H-benzo[b][1,4]-thiazin-2-amine and 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. J. Mol. Catal. Chem., 2012, 360, 26-34.
[http://dx.doi.org/10.1016/j.molcata.2012.04.002]
[62]
Ayati, A.; Daraie, M.; Heravi, M.M.; Tanhaei, B. Tungstophosphoric acid embedded magnetic chitosan as a green catalyst for the synthesis of N-cyclohexyl-3-aryl quinoxaline-2-amines. Iran. J. Catal., 2017, 7, 193-199.
[63]
Racané, L.; Zlatar, I.; Perin, N.; Cindrić, M.; Radovanović, V.; Banjanac, M.; Shanmugam, S.; Stojković, M.R.; Brajša, K.; Hranjec, M. Biological activity of newly synthesized benzimidazole and benzothizole 2,5-disubstituted furane derivatives. Molecules, 2021, 26(16), 4935.
[http://dx.doi.org/10.3390/molecules26164935] [PMID: 34443523]
[64]
Bendi, A.; Sangeeta; Singh, L.; Rao, G.B.D. Chemistry of biologically active benzimidazole scaffolds: Medicinal chemistry perspective. Mini Rev. Org. Chem., 2022, 19(7), 826-876.
[http://dx.doi.org/10.2174/1570193X19666220126094300]
[65]
Londhe, B.S.; Pratap, U.R.; Mali, J.R.; Mane, R.A. Synthesis of 2-arylbenzothiazoles catalyzed by biomimetic catalyst, β-Cyclodextrin. Bull. Korean Chem. Soc., 2010, 31(8), 2329-2332.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2329]
[66]
Bathula, S.B.; Khagga, M.; Venkatasubramanian, H. Chitosan-SO3H: A green approach to 2-aryl/heteroaryl benzothiazoles under solvent-free conditions at room temperature. Asian J. Chem., 2018, 30(7), 1512-1516.
[http://dx.doi.org/10.14233/ajchem.2018.21209]
[67]
Kuarm, B.S.; Madhav, J.V.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Crooks, P.A. Cellulose sulfuric acid: Novel and efficient biodegradable and recyclable acid catalyst for the solid-state synthesis of thiadiazolo benzimidazoles. Synth. Commun., 2011, 41(5), 662-669.
[http://dx.doi.org/10.1080/00397911003632899]
[68]
Maddila, S.; Momin, M.; Lavanya, P.; Rao, C.V. An efficient and eco-friendly synthesis of 6-chloro-8-substituted-9H-purines using cellulose sulfuric acid as a reusable catalyst under solvent-free conditions. J. Saudi Chem. Soc., 2016, 20(2), 173-177.
[http://dx.doi.org/10.1016/j.jscs.2012.06.008]
[69]
Zahedifar, M.; Es-haghi, A.; Zhiani, R.; Sadeghzadeh, S.M. Synthesis of benzimidazolones by immobilized gold nanoparticles on chitosan extracted from shrimp shells supported on fibrous phosphosilicate. RSC Adv., 2019, 9(12), 6494-6501.
[http://dx.doi.org/10.1039/C9RA00481E] [PMID: 35518508]
[70]
Pathare, B.; Bansode, T. Review-biological active benzimidazole derivatives. Results Chem., 2021, 3, 100200.
[http://dx.doi.org/10.1016/j.rechem.2021.100200]
[71]
Shelke, K.F.; Sapkal, S.B.; Kakade, G.K.; Shingate, B.B.; Shingare, M.S. Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the one-pot synthesis of 2,4,5-triarylimidazoles under microwave irradiation. Green Chem. Lett. Rev., 2010, 3(1), 27-32.
[http://dx.doi.org/10.1080/17518250903505246]
[72]
Khan, K.; Siddiqui, Z.N. An efficient synthesis of tri-and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst. Ind. Eng. Chem. Res., 2015, 54(26), 6611-6618.
[http://dx.doi.org/10.1021/acs.iecr.5b00511]
[73]
Maleki, A.; Gharibi, S.; Valadi, K.; Taheri-Ledari, R. Pumice-modified cellulose fiber: An environmentally benign solid state hybrid catalytic system for the synthesis of 2,4,5-triarylimidazole derivatives. J. Phys. Chem. Solids, 2020, 142, 109443.
[http://dx.doi.org/10.1016/j.jpcs.2020.109443]
[74]
Maleki, A.; Paydar, R. Graphene oxide-chitosan bionanocomposite: A highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions. RSC Advances, 2015, 5(42), 33177-33184.
[http://dx.doi.org/10.1039/C5RA03355A]
[75]
Rostami, E.; Sadat, G.N.M.; Nejad, G. Preparation, characterization and utilization of a novel trifluoroacetic acid supported starch/graphene oxide green nanocomposite for efficient synthesis of 2,4,5-trisubstituted imidazoles. Cellul. Chem. Technol., 2021, 55(9-10), 1095-1108.
[http://dx.doi.org/10.35812/CelluloseChemTechnol.2021.55.94]
[76]
Zarnegar, Z.; Safari, J. Fe3O4@chitosan nanoparticles: A valuable heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles. RSC Adv., 2014, 4(40), 20932-20939.
[http://dx.doi.org/10.1039/C4RA03176H]
[77]
Banazadeh, M.; Amirnejat, S.; Javanshir, S. Synthesis, characterization, and catalytic properties of magnetic Fe3O4@FU: A heterogeneous nanostructured mesoporous bio-based catalyst for the synthesis of imidazole derivatives. Front Chem., 2020, 8, 596029.
[http://dx.doi.org/10.3389/fchem.2020.596029] [PMID: 33335887]
[78]
Maleki, A.; Movahed, H.; Paydar, R. Design and development of a novel cellulose/γ-Fe2O3/Ag nanocomposite: A potential green catalyst and antibacterial agent. RSC Adv., 2016, 6(17), 13657-13665.
[http://dx.doi.org/10.1039/C5RA21350A]
[79]
Hamzavi, S.F.F.; Jamili, S.; Yousefzadi, M.; Moradi, A.M.; Biuki, N.A. Silver nanoparticles supported on chitosan as a green and robust heterogeneous catalyst for direct synthesis of nitrogen heterocyclic compounds under green conditions. Bull. Chem. React. Eng. Catal., 2019, 14(1), 51-59.
[http://dx.doi.org/10.9767/bcrec.14.1.2105.51-59]
[80]
Singh, H.; Rajput, J.K. Co(II) anchored glutaraldehyde crosslinked magnetic chitosan nanoparticles (MCS) for synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles. Appl. Organomet. Chem., 2018, 32(1), e3989.
[http://dx.doi.org/10.1002/aoc.3989]
[81]
Amirnejat, S.; Nosrati, A.; Javanshir, S.; Naimi-Jamal, M.R. Superparamagnetic alginate-based nanocomposite modified by L-arginine: An eco-friendly bifunctional catalysts and an efficient antibacterial agent. Int. J. Biol. Macromol., 2020, 152, 834-845.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.212] [PMID: 32088238]
[82]
Ghasemi, M.; Amoozadeh, A.; Kowsari, E. Chitosan-functionalized nano-titanium dioxide: a novel and highly efficient nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles under solvent-free conditions. React. Kinet. Mech. Catal., 2017, 120(2), 605-617.
[http://dx.doi.org/10.1007/s11144-016-1114-6]
[83]
Varzi, Z.; Esmaeili, M.S.; Taheri-Ledari, R.; Maleki, A. Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. Inorg. Chem. Commun., 2021, 125, 108465.
[84]
Abdelghany, A.M.; Soliman, H.A.; Khatab, T.K. Biosynthesized Selenium nanoparticles as a new catalyst in the synthesis of quinazoline derivatives in pentacyclic system with docking validation as (TRPV1) inhibitor. J. Organomet. Chem., 2021, 944, 121847.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121847]
[85]
Yuan, G.; Liu, H.; Gao, J.; Yang, K.; Niu, Q.; Mao, H.; Wang, X.; Lv, X. Copper-catalyzed domino addition/double cyclization: an approach to polycyclic benzimidazole derivatives. J. Org. Chem., 2014, 79(4), 1749-1757.
[http://dx.doi.org/10.1021/jo402742k] [PMID: 24490887]
[86]
Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Jethava, D.J.; Acharya, P.T.; Patel, D.B.; Patel, H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini Rev. Med. Chem., 2020, 20(7), 532-565.
[http://dx.doi.org/10.2174/1389557519666191122125453] [PMID: 31755386]
[87]
Karimi, M.; Naimi-Jamal, M.R. Carboxymethyl cellulose as a green and biodegradable catalyst for the solvent-free synthesis of benzimidazoloquinazolinone derivatives. J. Saudi Chem. Soc., 2019, 23(2), 182-187.
[http://dx.doi.org/10.1016/j.jscs.2018.06.007]
[88]
Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res., 2014, 53(6), 2085-2091.
[http://dx.doi.org/10.1021/ie402037d]
[89]
Maleki, A.; Aghaei, M.; Ghamari, N. Synthesis of benzimidazolo[2,3-b]quinazolinone derivatives via a one-pot multicomponent reaction promoted by a chitosan-based composite magnetic nanocatalyst. Chem. Lett., 2015, 44(3), 259-261.
[http://dx.doi.org/10.1246/cl.141074]
[90]
Ayati, A.; Daraie, M.; Heravi, M.M.; Tanhaei, B. H4[W12SiO40] grafted on magnetic chitosan: A green nanocatalyst for the synthesis of [1,2,4]triazolo/benzimidazolo quinazolinone derivatives. Micro Nano Lett., 2017, 12(12), 964-969.
[http://dx.doi.org/10.1049/mnl.2017.0053]
[91]
Javanmiri, K.; Karimian, R. Green synthesis of benzimidazoloquinazolines and 1,4-dihydropyridines using magnetic cyanoguanidine-modified chitosan as an efficient heterogeneous nanocatalyst under various conditions. Monatsh. Chem., 2020, 151(2), 199-212.
[http://dx.doi.org/10.1007/s00706-019-02542-z]
[92]
Verma, P.; Pal, S.; Chauhan, S.; Mishra, A.; Sinha, I.; Singh, S.; Srivastava, V. Starch functionalized magnetite nanoparticles: A green, biocatalyst for one-pot multicomponent synthesis of imidazopyrimidine derivatives in aqueous medium under ultrasound irradiation. J. Mol. Struct., 2020, 1203, 127410.
[http://dx.doi.org/10.1016/j.molstruc.2019.127410]
[93]
Shamsi-Sani, M.; Shirini, F.; Mohammadi-Zeydi, M. Nanostructured γ-Fe2O3@Starch-n-Butyl SO3H as new recyclable magnetic catalyst for promoting multi-component reactions. J. Nanosci. Nanotechnol., 2019, 19(8), 4503-4511.
[http://dx.doi.org/10.1166/jnn.2019.16489] [PMID: 30913741]
[94]
Safajoo, N.; Mirjalili, B.B.F.; Bamoniri, A. Fe3O4@nano-cellulose/Cu(II): A bio-based and magnetically recoverable nano-catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives. RSC Adv., 2019, 9(3), 1278-1283.
[http://dx.doi.org/10.1039/C8RA09203F] [PMID: 35518002]
[95]
Hosseinikhah, S.S.; Mirjalili, B.B.F. Fe3O4@NCs/Sb(V): As a cellulose based nano-catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazoles. Polycycl. Aromat. Compd., 2022, 42(4), 1013-1022.
[http://dx.doi.org/10.1080/10406638.2020.1764985]
[96]
Mahire, V.N.; Patil, G.P.; Deore, A.B.; Chavan, P.G.; Jirimali, H.D.; Mahulikar, P.P. Sulfonated chitosan-encapsulated HAp@Fe3O4: An efficient and recyclable magnetic nanocatalyst for rapid eco-friendly synthesis of 2-amino-4-substituted-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carbonitriles. Res. Chem. Intermed., 2018, 44(10), 5801-5815.
[http://dx.doi.org/10.1007/s11164-018-3456-3]
[97]
Duc, D.X. Recent achievement in the synthesis of benzo[b]furans. Curr. Org. Synth., 2020, 17(7), 498-517.
[http://dx.doi.org/10.2174/1570179417666200625212639] [PMID: 32586253]
[98]
Maddila, S.; Kerru, N.; Jonnalagadda, S.B. Recent progress in the multicomponent synthesis of pyran derivatives by sustainable catalysts under green conditions. Molecules, 2022, 27(19), 6347.
[http://dx.doi.org/10.3390/molecules27196347] [PMID: 36234888]
[99]
Arde, S.; Chavan, Y.; Mahavidyalaya, W.; Kamat, S.R.; Mane, A.H.; Arde, S.M.; Salunkhe, R.S. β-cyclodextrin-glycerin as a versatile green system for synthesis of 2-amino-tetrahydro-4H-chromenes international journal of pharmaceutical, chemical and biological sciences β-cyclodextrin-glycerin as a versatile green system for synthesis of 2-amino-tetrahydro-4H-chromenes. IJPCBS, 2014, (4), 1012-1021.
[100]
Dekamin, M.G.; Peyman, S.Z.; Karimi, Z.; Javanshir, S.; Naimi-Jamal, M.R.; Barikani, M. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol., 2016, 87, 172-179.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.080] [PMID: 26845480]
[101]
Maleki, A.; Ghassemi, M.; Firouzi-Haji, R. Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl. Chem., 2018, 90(2), 387-394.
[http://dx.doi.org/10.1515/pac-2017-0702]
[102]
Kamalzare, M.; Bayat, M.; Maleki, A. Green and efficient three-component synthesis of 4H-pyran catalysed by CuFe2O4@starch as a magnetically recyclable bionanocatalyst. R. Soc. Open Sci., 2020, 7(7), 200385.
[http://dx.doi.org/10.1098/rsos.200385] [PMID: 32874634]
[103]
Maleki, A.; Varzi, Z.; Hassanzadeh-Afruzi, F. Preparation and characterization of an eco-friendly ZnFe2O4@alginic acid nanocomposite catalyst and its application in the synthesis of 2-amino-3-cyano-4H-pyran derivatives. Polyhedron, 2019, 171, 193-202.
[http://dx.doi.org/10.1016/j.poly.2019.07.016]
[104]
Bahrami, S.; Hassanzadeh-Afruzi, F.; Maleki, A. Synthesis and characterization of a novel and green rod‐like magnetic ZnS/CuFe2O4/agar organometallic hybrid catalyst for the synthesis of biologically‐active 2‐amino‐tetrahydro‐4H‐chromene‐3‐carbonitrile derivatives. Appl. Organomet. Chem., 2020, 34(11), e5949.
[http://dx.doi.org/10.1002/aoc.5949]
[105]
Esmaeili, M.S.; Khodabakhshi, M.R.; Maleki, A.; Varzi, Z. Green, natural and low cost xanthum gum supported Fe3O4 as a robust biopolymer nanocatalyst for the one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives. Polycycl. Aromat. Compd., 2021, 41(9), 1953-1971.
[http://dx.doi.org/10.1080/10406638.2019.1708418]
[106]
Koohestani, F.; Sadjadi, S. Polyionic liquid decorated chitosan beads as versatile metal-free catalysts for catalyzing chemical reactions in aqueous media. J. Mol. Liq., 2021, 334, 115754.
[http://dx.doi.org/10.1016/j.molliq.2021.115754]
[107]
Thurston, D.E.; Bose, D.S.; Thompson, A.S.; Howard, P.W.; Leoni, A.; Croker, S.J.; Jenkins, T.C.; Neidle, S.; Hartley, J.A.; Hurley, L.H. Synthesis of sequence-selective c8-linked pyrrolo[2,1-c][1,4]benzodiazepine DNA interstrand cross-linking agents. J. Org. Chem., 1996, 61(23), 8141-8147.
[http://dx.doi.org/10.1021/jo951631s] [PMID: 11667802]
[108]
Yang, G.Y.; Oh, K.A.; Park, N.J.; Jung, Y.S. New oxime reactivators connected with CH2O(CH2)nOCH2 linker and their reactivation potency for organophosphorus agents-inhibited acetylcholinesterase. Bioorg. Med. Chem., 2007, 15(24), 7704-7710.
[http://dx.doi.org/10.1016/j.bmc.2007.08.056] [PMID: 17869525]
[109]
Salama, S.K.; Darweesh, A.F.; Abdelhamid, I.A.; Elwahy, A.H.M. Microwave assisted green multicomponent synthesis of novel bis(2‐amino‐tetrahydro‐4H‐chromene‐3‐carbonitrile) derivatives using chitosan as eco‐friendly basic catalyst. J. Heterocycl. Chem., 2017, 54(1), 305-312.
[http://dx.doi.org/10.1002/jhet.2584]
[110]
Ilkhanizadeh, S.; Khalafy, J.; Dekamin, M.G. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int. J. Biol. Macromol., 2019, 140, 605-613.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.154] [PMID: 31437499]
[111]
Safaei-Ghomi, J.; Tavazo, M.; Shahbazi-Alavi, H. Chitosan-attached nano-Fe3O4 as a superior and retrievable heterogeneous catalyst for the synthesis of benzopyranophenazines using chitosan-attached nano-Fe3O4. Z. fur Naturforsch. B. J. Chem. Sci., 2019.
[112]
Liu, L.; Wang, Q.H.; Li, Y.; Wu, M.S. 3‐Pyrazolyl‐oxindoles as efficient nucleophiles for construction of 3,3′‐diheterocycle substituted oxindoles using chitosan as reusable catalyst in water. J. Heterocycl. Chem., 2022, 59(2), 388-393.
[http://dx.doi.org/10.1002/jhet.4390]
[113]
Shinde, S.; Rashinkar, G.; Salunkhe, R. DABCO entrapped in agar-agar: A heterogeneous gelly catalyst for multi-component synthesis of 2-amino-4H-chromenes. J. Mol. Liq., 2013, 178, 122-126.
[http://dx.doi.org/10.1016/j.molliq.2012.10.019]
[114]
Rai, P.; Srivastava, M.; Yadav, S.; Singh, J.; Singh, J. β-Cyclodextrin: A biomimetic catalyst used for the synthesis of 4h-chromene-3-carbonitrile and tetrahydro-1H-xanthen-1-one derivatives. Catal. Lett., 2015, 145(12), 2020-2028.
[http://dx.doi.org/10.1007/s10562-015-1588-2]
[115]
Brown, A.W. Recent developments in the chemistry of pyrazoles. Adv. Heterocycl. Chem., 2018, 126, 55-107.
[http://dx.doi.org/10.1016/bs.aihch.2018.02.001]
[116]
Mamaghani, M.; Hossein, N.R. A review on the recent multicomponent synthesis of pyranopyrazoles. Polycycl. Aromat. Compd., 2021, 41(2), 223-291.
[http://dx.doi.org/10.1080/10406638.2019.1584576]
[117]
Tayade, Y.A.; Padvi, S.A.; Wagh, Y.B.; Dalal, D.S. β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] in aqueous medium. Tetrahedron Lett., 2015, 56(19), 2441-2447.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.084]
[118]
Kangani, M.; Hazeri, N.; Maghsoodlou, M-T. Starch solution as a green and biodegradable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives, Iran. J. Org. Chem., 2015, 7(3), 1591-1595.
[119]
Vekariya, R.H.; Patel, K.D.; Patel, H.D. Starch-sulfuric acid (SSA) as a bio-degradable and recyclable solid acid catalyst for one-pot synthesis of 6-amino-1,4-dihydropyrano[2,3-c]-pyrazole-5-carbonitriles. Iran J.Org.Chem., 2015, 7(3), 1581-1589.
[120]
Hassanzadeh-Afruzi, F.; Amiri-Khamakani, Z.; Bahrami, S.; Ahghari, M.R.; Maleki, A. Assessment of catalytic and antibacterial activity of biocompatible agar supported ZnS/CuFe2O4 magnetic nanotubes. Sci. Rep., 2022, 12(1), 4503.
[http://dx.doi.org/10.1038/s41598-022-08318-6] [PMID: 35297399]
[121]
Agrwal, A.; Pathak, R.K.; Kasana, V. Molecular docking and antibacterial studies of pyranopyrazole derivatives synthesized using [Pap-Glu@Chi] biocatalyst through a greener approach. Arab. J. Sci. Eng., 2022, 47(1), 347-363.
[http://dx.doi.org/10.1007/s13369-021-05377-1]
[122]
Amiri-Khamakani, Z.; Hassanzadeh-Afruzi, F.; Maleki, A. Magnetized dextrin: Eco-friendly effective nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Chem. Proc., 2020, 3(1), 101.
[http://dx.doi.org/10.3390/ecsoc-24-08285]
[123]
Heydari, F.; Bakhtiarian, M.; Khodaei, M.M. Preparation of Fe3O4@Carrageenan-Metformin nanoparticles as a new bio-inspired magnetic nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles. Mater. Sci. Eng. B, 2023, 296, 116686.
[http://dx.doi.org/10.1016/j.mseb.2023.116686]
[124]
Ayati, A.; Heravi, M.M.; Daraie, M.; Tanhaei, B.; Bamoharram, F.F.; Sillanpaa, M. H3PMo12O40 immobilized chitosan/Fe3O4 as a novel efficient, green and recyclable nanocatalyst in the synthesis of pyrano-pyrazole derivatives. J. Indian Chem. Soc., 2016, 13(12), 2301-2308.
[http://dx.doi.org/10.1007/s13738-016-0949-0]
[125]
Dharmendra, D.; Chundawat, P.; Vyas, Y.; Ameta, C. Ultrasound-assisted efficient synthesis and antimicrobial evaluation of pyrazolopyranopyrimidine derivatives using starch functionalized magnetite nanoparticles as a green biocatalyst in water. J. Chem. Sci., 2022, 134(2), 47.
[http://dx.doi.org/10.1007/s12039-022-02040-6]
[126]
Amirnejat, S.; Nosrati, A.; Javanshir, S. Superparamagnetic Fe3O4@Alginate supported L‐arginine as a powerful hybrid inorganic-organic nanocatalyst for the one‐pot synthesis of pyrazole derivatives. Appl. Organomet. Chem., 2020, 34(10), e5888.
[http://dx.doi.org/10.1002/aoc.5888]
[127]
Bakhtiarian, M.; Khodaei, M.M. Pyridinium-based dual acidic ionic liquid supported on the pectin for efficient synthesis of pyrazoles. J. Mol. Liq., 2022, 363, 119883.
[http://dx.doi.org/10.1016/j.molliq.2022.119883]
[128]
Marandi, A.; Nasiri, E.; Koukabi, N.; Seidi, F. The Fe3O4@apple seed starch core-shell structure decorated In(III): A green biocatalyst for the one-pot multicomponent synthesis of pyrazole-fused isocoumarins derivatives under solvent-free conditions. Int. J. Biol. Macromol., 2021, 190, 61-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.085] [PMID: 34411618]
[129]
Venu Madhav, J.; Thirupathi Reddy, Y.; Narsimha Reddy, P.; Nikhil Reddy, M.; Kuarm, S.; Crooks, P.A.; Rajitha, B. Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a.j]xanthenes under solvent-free conditions. J. Mol. Catal. Chem., 2009, 304(1-2), 85-87.
[http://dx.doi.org/10.1016/j.molcata.2009.01.028]
[130]
Yue, X.; Wu, Z.; Wang, G.; Liang, Y.; Sun, Y.; Song, M.; Zhan, H.; Bi, S.; Liu, W. High acidity cellulose sulfuric acid from sulfur trioxide: A highly efficient catalyst for the one step synthesis of xanthene and dihydroquinazolinone derivatives. RSC Adv., 2019, 9(49), 28718-28723.
[http://dx.doi.org/10.1039/C9RA05748J] [PMID: 35529635]
[131]
Safari, J.; Aftabi, P.; Ahmadzadeh, M.; Sadeghi, M.; Zarnegar, Z. Sulfonated starch nanoparticles: An effective, heterogeneous and bio-based catalyst for synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes. J. Mol. Struct., 2017, 1142, 33-39.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.095]
[132]
Hoseinzade, K.; Mousavi-Mashhadi, S.A.; Shiri, A. An efficient and green one-pot synthesis of tetrahydrobenzo[a]xanthenes, 1,8-dioxo-octahydroxanthenes and dibenzo[a,j]xanthenes by Fe3O4@Agar-Ag as nanocatalyst. Mol. Divers., 2022, 26(5), 2745-2759.
[http://dx.doi.org/10.1007/s11030-021-10368-3] [PMID: 35091896]
[133]
Karhale, S.; Patil, M.; Rashinkar, G.; Helavi, V. Green and cost effective protocol for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines by using sawdust sulphonic acid. Res. Chem. Intermed., 2017, 43(12), 7073-7086.
[http://dx.doi.org/10.1007/s11164-017-3059-4]
[134]
Ghamari kargar, P.; Bagherzade, G.; Eshghi, H. Introduction of a trinuclear manganese(III) catalyst on the surface of magnetic cellulose as an eco-benign, efficient and reusable novel heterogeneous catalyst for the multi-component synthesis of new derivatives of xanthene. RSC Adv., 2021, 11(8), 4339-4355.
[http://dx.doi.org/10.1039/D0RA09420J] [PMID: 35424405]
[135]
Chen, W.; Peng, X.; Zhong, L.; Li, Y.; Sun, R. Lignosulfonic acid: A renewable and effective biomass-based catalyst for multicomponent reactions. ACS Sustain. Chem. Eng., 2015, 3(7), 1366-1373.
[http://dx.doi.org/10.1021/acssuschemeng.5b00091]
[136]
Mohammadi, R.; Eidi, E.; Ghavami, M.; Kassaee, M.Z. Chitosan synergistically enhanced by successive Fe3O4 and silver nanoparticles as a novel green catalyst in one-pot, three-component synthesis of tetrahydrobenzo[α]xanthene-11-ones. J. Mol. Catal. Chem., 2014, 393, 309-316.
[http://dx.doi.org/10.1016/j.molcata.2014.06.005]
[137]
Kuarm, B.S.; Madhav, J.V.; Laxmi, S.V.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Crooks, P.A. Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the synthesis of 1-oxo-hexahydroxanthene. Synth. Commun., 2011, 41(12), 1719-1724.
[http://dx.doi.org/10.1080/00397911.2010.492076]
[138]
Varakumar, P.; Rajagopal, K.; Aparna, B.; Raman, K.; Byran, G.; Gonçalves, L.C.M.; Rashid, S.; Nafady, M.H.; Emran, T.B.; Wybraniec, S. Acridine as an anti-tumour agent: A critical review. Molecules, 2022, 28(1), 193.
[http://dx.doi.org/10.3390/molecules28010193] [PMID: 36615391]
[139]
Gabriel, I. ‘Acridines’ as new horizons in antifungal treatment. Molecules, 2020, 25(7), 1480.
[http://dx.doi.org/10.3390/molecules25071480] [PMID: 32218216]
[140]
Burange, A.S.; Gadam, K.G.; Tugaonkar, P.S.; Thakur, S.D.; Soni, R.K.; Khan, R.R.; Tai, M.S.; Gopinath, C.S. Green synthesis of xanthene and acridine-based heterocycles of pharmaceutical importance: A review. Environ. Chem. Lett., 2021, 19(4), 3283-3314.
[http://dx.doi.org/10.1007/s10311-021-01223-w]
[141]
Chate, A.V.; Rathod, U.B.; Kshirsagar, J.S.; Gaikwad, P.A.; Mane, K.D.; Mahajan, P.S.; Nikam, M.D.; Gill, C.H. Ultrasound assisted multicomponent reactions: A green method for the synthesis of N-substituted 1,8-dioxo-decahydroacridines using β-cyclodextrin as a supramolecular reusable catalyst in water. Chin. J. Catal., 2016, 37(1), 146-152.
[http://dx.doi.org/10.1016/S1872-2067(15)61005-1]
[142]
Blanco-Acuña, E.F.; García-Ortega, H. Synthesis, photophysical behavior in solution, aggregates, solid state and computational study of new derivatives of 2,2′-bis(indolyl)methane-triphenylamine. J. Mol. Struct., 2022, 1265(5), 133507.
[http://dx.doi.org/10.1016/j.molstruc.2022.133507]
[143]
Chettri, B.; Jha, S.; Dey, N. Tuning anion binding properties of bis(indolyl)methane receptors: Effect of substitutions on optical responses. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2023, 287(Pt 1), 121979.
[http://dx.doi.org/10.1016/j.saa.2022.121979] [PMID: 36327812]
[144]
Sadaphal, S.A.; Sonar, S.S.; Ware, M.N.; Shingare, M.S. Cellulose sulfuric acid: Reusable catalyst for solvent-free synthesis of bis(indolyl)methanes at room temperature. Green Chem. Lett. Rev., 2008, 1(4), 191-196.
[http://dx.doi.org/10.1080/17518250802637819]
[145]
Shaikh, S.I.; Zaheer, Z.; Mokale, S.N. A simple and efficient supramolecular chemistry approach for synthesis of bis(indolyl)methanes using aqueous β-cyclodextrin as green promoter host. Lett. Org. Chem., 2018, 15, 32-38.
[146]
Mosaddegh, E.; Hassankhani, A.; Baghizadeh, A. Cellulose sulfuric acid as a new, biodegradable and environmentally friendly bio-polymer for synthesis of 4,4′-(Arylmethylene)Bis(3-Methyl-1-Phenyl-1h-Pyrazol-5-Ols). J. Chil. Chem. Soc., 2010, 55(4), 419-420.
[http://dx.doi.org/10.4067/S0717-97072010000400001]
[147]
Rezaei, R.; Sheikhi, M.R. Starch-sulfuric acid as a bio-supported and recyclable solid acid catalyst for rapid synthesis of α,α′-benzylidene bis(4-hydroxycoumarin) derivatives. Res. Chem. Intermed., 2015, 41(3), 1283-1292.
[http://dx.doi.org/10.1007/s11164-013-1272-3]
[148]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. A highly effective synthesis of pyrimido[4,5-b]quinoline-tetraones using H3PW12O40/chitosan/NiCo2O4 as a novel magnetic nanocomposite. Polyhedron, 2020, 182, 114459.
[http://dx.doi.org/10.1016/j.poly.2020.114459]
[149]
Patil, A.; Gajare, S.; Rashinkar, G.; Salunkhe, R. β-CDSO3H: Synthesis, characterization and its application for the synthesis of benzylpyrazolyl naphthoquinone and pyrazolo pyranopyrimidine derivatives in water. Catal. Lett., 2020, 150(1), 127-137.
[http://dx.doi.org/10.1007/s10562-019-02928-y]
[150]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. H3PMo12O40‐immobilized chitosan/Co3O4: A novel and recyclable nanocomposite for the synthesis of pyrimidinedione derivatives. Appl. Organomet. Chem., 2019, 33(5), e4748.
[http://dx.doi.org/10.1002/aoc.4748]
[151]
Esfandiari, M.; Vakili, M.R. Chitosan functionalized by triacid imide as an efficient catalyst for the synthesis of chromen-pyrimidines. Polycycl. Aromat. Compd., 2022, 42(5), 2738-2750.
[http://dx.doi.org/10.1080/10406638.2020.1852270]
[152]
Srivastava, A.; Yadav, A.; Samanta, S. Biopolymeric alginic acid: An efficient recyclable green catalyst for the Friedel-Crafts reaction of indoles with isoquinoline-1,3,4-triones in water. Tetrahedron Lett., 2015, 56(44), 6003-6007.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.041]
[153]
Daemi, H.; Rad, R.R.; Adib, M.; Barikani, M. Sodium alginate: A renewable and very eeective biopolymer catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)- Ones. Chem. Eng. Trans., 2014, 21(6), 2076-2081.
[154]
Reddy, P.N.; Reddy, Y.T.; Reddy, M.N.; Rajitha, B.; Crooks, P.A. Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones. Synth. Commun., 2009, 39(7), 1257-1263.
[http://dx.doi.org/10.1080/00397910802517871]
[155]
Rezaei, R.; Malek, S.; Sheikhi, M.R.; Mohammadi, M.K. Starch sulfuric acid: An alternative, eco-friendly catalyst for biginelli reaction. Chem. J. Mold., 2013, 8(2), 101-106.
[http://dx.doi.org/10.19261/cjm.2013.08(2).13]
[156]
Hoseinabadi, Z.; Pourmousavi, S.A. Synthesis of starch derived sulfonated carbon-based solid acid as a novel and efficient nanocatalyst for the synthesis of dihydropyrimidinones. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2019, 46(1), 132-143.
[157]
Behrouz, S.; Abi, M.N.; Piltan, M.A. Chitosan-silica sulfate nano hybrid: An efficient biopolymer based-heterogeneous nano catalyst for solvent-free synthesis of 3,4-dihydropyrimidine-2(1H)-one/thiones. Acta Chim. Slov., 2021, 68(2), 374-386.
[http://dx.doi.org/10.17344/acsi.2020.6343] [PMID: 34738115]
[158]
Afradi, N.; Foroughifar, N.; Pasdar, H.; Qomi, M. Aspartic-acid-loaded starch-functionalized Mn-Fe-Ca ferrite magnetic nanoparticles as novel green heterogeneous nanomagnetic catalyst for solvent-free synthesis of dihydropyrimidine derivatives as potent antibacterial agents. Res. Chem. Intermed., 2019, 45(5), 3251-3271.
[http://dx.doi.org/10.1007/s11164-019-03791-7]
[159]
Lal, J.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient biodegradable and recyclable green catalyst for one-pot synthesis of 3,4-dihydropyrimidinones of curcumin in aqueous media. Catal. Commun., 2012, 27, 38-43.
[http://dx.doi.org/10.1016/j.catcom.2012.06.017]
[160]
Ghaffarian, F.; Ghasemzadeh, M.A.; Aghaei, S.S. An efficient synthesis of some new curcumin based pyrano[2,3-d]pyrimidine-2,4(3H)-dione derivatives using CoFe2O4@OCMC@Cu(BDC) as a novel and recoverable catalyst. J. Mol. Struct., 2019, 1186, 204-211.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.029]
[161]
Velena, A.; Zarkovic, N.; Gall Troselj, K.; Bisenieks, E.; Krauze, A.; Poikans, J.; Duburs, G. 1,4-Dihydropyridine derivatives: Dihydronicotinamide analogues-model compounds targeting oxidative stress. Oxid. Med. Cell. Longev., 2016, 2016, 1-35.
[http://dx.doi.org/10.1155/2016/1892412] [PMID: 26881016]
[162]
Edraki, N.; Mehdipour, A.R.; Khoshneviszadeh, M.; Miri, R. Dihydropyridines: Evaluation of their current and future pharmacological applications. Drug Discov. Today, 2009, 14(21-22), 1058-1066.
[http://dx.doi.org/10.1016/j.drudis.2009.08.004] [PMID: 19729074]
[163]
Rezaei, A.R.; Saberi, S.; Sepehri, S. Synthesis, antileishmanial activity and molecular docking study of a series of dihydropyridine derivatives. Polycycl. Aromat. Compd., 2023, 43(5), 4640-4653.
[http://dx.doi.org/10.1080/10406638.2022.2092877]
[164]
Patil, D.R.; Dalal, D.S. One-pot, solvent free synthesis of hantzsch 1,4-dihydropyridines using-cyclodextrin as a supramolecular catalyst. Lett. Org. Chem., 2011, 8(7), 477-483.
[http://dx.doi.org/10.2174/157017811796504891]
[165]
Dekamin, M.G.; Ilkhanizadeh, S.; Latifidoost, Z.; Daemi, H.; Karimi, Z.; Barikani, M. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv., 2014, 4(100), 56658-56664.
[http://dx.doi.org/10.1039/C4RA11801D]
[166]
Safari, J.; Azizi, F.; Sadeghi, M. Chitosan nanoparticles as a green and renewable catalyst in the synthesis of 1,4-dihydropyridine under solvent-free conditions. New J. Chem., 2015, 39(3), 1905-1909.
[http://dx.doi.org/10.1039/C4NJ01730G]
[167]
Murthy, Y.L.N.; Rajack, A.; Taraka, R.M.; Jeson, B.J.; Praveen, C.; Aruna, L.K. Design, solvent free synthesis, and antimicrobial evaluation of 1,4 dihydropyridines. Bioorg. Med. Chem. Lett., 2012, 22(18), 6016-6023.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.003] [PMID: 22901391]
[168]
Dekamin, M.G.; Kazemi, E.; Karimi, Z.; Mohammadalipoor, M.; Naimi-Jamal, M.R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol., 2016, 93(Pt A), 767-774.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.012] [PMID: 27608546]
[169]
Maleki, A.; Eskandarpour, V.; Rahimi, J.; Hamidi, N. Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym., 2019, 208, 251-260.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.069] [PMID: 30658798]
[170]
Rao, K.S.V.K.; Nagaraja, K.; Adilakshmi, B.; Lakshmidevi, J.; Reddy, G.V.; Han, S.S.; Rao, K.M. Recent advances in chitosan-based composite materials in organic transformations-a review. Curr. Org. Chem., 2022, 26(13), 1294-1302.
[http://dx.doi.org/10.2174/1385272826666220908120319]
[171]
Kamalzare, P.; Mirza, B.; Soleimani-Amiri, S. Chitosan magnetic nanocomposite: A magnetically reusable nanocatalyst for green synthesis of Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Nano Struct. Chem., 2021, 11(2), 229-243.
[http://dx.doi.org/10.1007/s40097-020-00361-x]
[172]
Safaiee, M.; Ebrahimghasri, B.; Zolfigol, M.A.; Baghery, S.; Khoshnood, A.; Alonso, D.A. Synthesis and application of chitosan supported vanadium oxo in the synthesis of 1,4-dihydropyridines and 2,4,6-triarylpyridines via anomeric based oxidation. New J. Chem., 2018, 42(15), 12539-12548.
[http://dx.doi.org/10.1039/C8NJ02062K]
[173]
Asgharnasl, S.; Eivazzadeh-Keihan, R.; Radinekiyan, F.; Maleki, A. Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1,8-dioxo-decahydroacridine derivatives. Int. J. Biol. Macromol., 2020, 144, 29-46.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.059] [PMID: 31830445]
[174]
Pourian, E.; Javanshir, S.; Dolatkhah, Z.; Molaei, S.; Maleki, A. Ultrasonic-assisted preparation, characterization, and use of novel biocompatible core/shell Fe3O4@GA@Isinglass in the synthesis of 1,4-dihydropyridine and 4H-pyran derivatives. ACS Omega, 2018, 3(5), 5012-5020.
[http://dx.doi.org/10.1021/acsomega.8b00379] [PMID: 31458714]
[175]
Valadi, K.; Gharibi, S.; Taheri-Ledari, R.; Maleki, A. Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci., 2020, 101, 106141.
[http://dx.doi.org/10.1016/j.solidstatesciences.2020.106141]
[176]
Bakhtiarian, M.; Khodaei, M.M. Sonochemical synthesis of 1,4-dihydropyridines using a bio-derived magnetic nanocomposite based on the pectin modified with the di-sulfonic acids under mild conditions. Mater. Today Commun., 2021, 29, 102791.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102791]
[177]
Yarhosseini, M.; Javanshir, S.; Farhadnia, M.; Dekamin, M.G. Silicasupported alginic acid-l-glutamic acid: An efficient heterogeneous catalyst for solvent-free synthesis of 1,8-dioxohexahydroacridine and polyhydroquinoline derivatives. The 18th International Electronic Conference on Synthetic Organic Chemistry, 2014.
[178]
Taheri-Ledari, R.; Esmaeili, M.S.; Varzi, Z.; Eivazzadeh-Keihan, R.; Maleki, A.; Shalan, A.E. Facile route to synthesize Fe3O4@acacia-SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv., 2020, 10(66), 40055-40067.
[http://dx.doi.org/10.1039/D0RA07986C] [PMID: 35520839]
[179]
Rostami, N.; Dekamin, M.G.; Valiey, E. Chitosan-EDTA-cellulose bio-based network: A recyclable multifunctional organocatalyst for green and expeditious synthesis of hantzsch esters. Carbohydr. Polym., 2023, 5, 100279.
[180]
Zhaleh, S.; Hazeri, N.; Faghihi, M.R.; Maghsoodlou, M.T. Chitosan: A sustainable, reusable and biodegradable organocatalyst for green synthesis of 1,4-dihydropyridine derivatives under solvent-free condition. Res. Chem. Intermed., 2016, 42(12), 8069-8081.
[http://dx.doi.org/10.1007/s11164-016-2579-7]
[181]
Alghamdi, K.S.; Ahmed, N.S.I.; Bakhotmah, D.; Mokhtar, M. Chitosan decorated copper nanoparticles as efficient catalyst for synthesis of novel quinoline derivatives. J. Nanosci. Nanotechnol., 2020, 20(2), 890-899.
[http://dx.doi.org/10.1166/jnn.2020.16923] [PMID: 31383084]
[182]
Zare, E.; Rafiee, Z. Magnetic chitosan supported covalent organic framework/copper nanocomposite as an efficient and recoverable catalyst for the unsymmetrical hantzsch reaction. J. Taiwan Inst. Chem. Eng., 2020, 116, 205-214.
[http://dx.doi.org/10.1016/j.jtice.2020.10.028]
[183]
Maleki, A.; Hassanzadeh-Afruzi, F.; Varzi, Z.; Esmaeili, M.S. Magnetic dextrin nanobiomaterial: An organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction. Mater. Sci. Eng. C, 2020, 109, 110502.
[http://dx.doi.org/10.1016/j.msec.2019.110502] [PMID: 32228990]
[184]
Rostamnia, S.; Doustkhah, E.; Baghban, A.; Zeynizadeh, B. Seaweed‐derived κ‐carrageenan: Modified κ‐carrageenan as a recyclable green catalyst in the multicomponent synthesis of aminophosphonates and polyhydroquinolines. J. Appl. Polym. Sci., 2016, 133(11), app.43190.
[http://dx.doi.org/10.1002/app.43190]
[185]
Safari, J.; Banitaba, S.H.; Khalili, S.D. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media. J. Mol. Catal. Chem., 2011, 335(1-2), 46-50.
[http://dx.doi.org/10.1016/j.molcata.2010.11.012]
[186]
Rajack, A.; Yuvaraju, K.; Praveen, C.; Murthy, Y.L.N. A facile synthesis of 3,4-dihydropyrimidinones/thiones and novel N-dihydro pyrimidinone-decahydroacridine-1,8-diones catalyzed by cellulose sulfuric acid. J. Mol. Catal. Chem., 2013, 370, 197-204.
[http://dx.doi.org/10.1016/j.molcata.2013.01.003]
[187]
Azimi, S.C. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of pyrimido and pyrazolo[4,5-b]quinolines under solvent-free conditions. Iranian J. Catal., 2014, 4(2), 113-120.
[188]
Sayahi, M.H.; Sepahdar, A.; Bazrafkan, F.; Dehghani, F.; Mahdavi, M.; Bahadorikhalili, S. Ionic liquid modified SPION@Chitosan as a novel and reusable superparamagnetic catalyst for green one-pot synthesis of pyrido[2,3-d]pyrimidine-dione derivatives in water. Catalysts, 2023, 13(2), 290.
[http://dx.doi.org/10.3390/catal13020290]
[189]
Moshnenko, N.; Kazantsev, A.; Chupakhin, E.; Bakulina, O.; Dar’in, D. Synthetic routes to approved drugs containing a spirocycle. Molecules, 2023, 28(10), 4209.
[http://dx.doi.org/10.3390/molecules28104209] [PMID: 37241950]
[190]
Fatahala, S.S.; Mahgub, S.; Taha, H.; Abd-El Hameed, R.H. Synthesis and evaluation of novel spiro derivatives for pyrrolopyrimidines as anti-hyperglycemia promising compounds. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 809-817.
[http://dx.doi.org/10.1080/14756366.2018.1461854] [PMID: 29708461]
[191]
Ding, A.; Meazza, M.; Guo, H.; Yang, J.W.; Rios, R. New development in the enantioselective synthesis of spiro compounds. Chem. Soc. Rev., 2018, 47(15), 5946-5996.
[http://dx.doi.org/10.1039/C6CS00825A] [PMID: 29953153]
[192]
Abdelhamid, I. Synthesis of novel spiro cyclic 2-oxindole derivatives of 6-amino-4h-pyridazine via [3+3] atom combination utilizing chitosan as a catalyst. Synlett, 2009, 2009(4), 625-627.
[http://dx.doi.org/10.1055/s-0028-1087558]
[193]
Naeimi, H.; Lahouti, S. Sulfonated chitosan encapsulated magnetically Fe3O4 nanoparticles as effective and reusable catalyst for ultrasound-promoted rapid, three-component synthesis of spiro-4H-pyrans. J. Indian Chem. Soc., 2018, 15(9), 2017-2031.
[http://dx.doi.org/10.1007/s13738-018-1399-7]
[194]
Lahouti, S.; Naeimi, H. Chitosan-encapsulated manganese ferrite particles bearing sulfonic acid group catalyzed efficient synthesis of spiro indenoquinoxalines. RSC Adv., 2020, 10(55), 33334-33343.
[http://dx.doi.org/10.1039/D0RA04925E] [PMID: 35515027]
[195]
Ahmed, N.; Siddiqui, Z.N. Cerium supported chitosan as an efficient and recyclable heterogeneous catalyst for sustainable synthesis of spiropiperidine derivatives. ACS Sustain. Chem. Eng., 2015, 3(8), 1701-1707.
[http://dx.doi.org/10.1021/acssuschemeng.5b00223]
[196]
Safaei-Ghomi, J.; Lashkari, M.R.; Shahbazi-Alavi, H. Synthesis of bis-spiropiperidines using nano-CuFe2O4@chitosan as a robust and retrievable heterogeneous catalyst. J. Chem. Res., 2017, 41(7), 416-419.
[http://dx.doi.org/10.3184/174751917X14967701767067]
[197]
Patil, A.; Shinde, S.; Rashinkar, G.; Salunkhe, R. Synthesis of spiro-fused heterocycles under aerobic conditions by using polymer gel-entrapped catalyst. Res. Chem. Intermed., 2020, 46(1), 63-73.
[http://dx.doi.org/10.1007/s11164-019-03935-9]
[198]
Asif, M. Some recent approaches of biologically active substituted pyridazine and phthalazine drugs. Curr. Med. Chem., 2012, 19(18), 2984-2991.
[http://dx.doi.org/10.2174/092986712800672139] [PMID: 22519394]
[199]
Tayade, Y.A.; Dalal, D.S. β-cyclodextrin as a supramolecular catalyst for the synthesis of 1h-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives in water. Catal. Lett., 2017, 147(6), 1411-1421.
[http://dx.doi.org/10.1007/s10562-017-2032-6]
[200]
Han, Y.; Gao, Y.; Cao, X.; Zangeneh, M.M.; Liu, S.; Li, J. Ag NPs on chitosan-alginate coated magnetite for synthesis of indazolo[2,1-b]phthalazines and human lung protective effects against α-Guttiferin. Int. J. Biol. Macromol., 2020, 164, 2974-2986.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.183] [PMID: 32853620]
[201]
Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Recent developments in the synthesis of imidazo[1,2-a]pyridines. Synthesis, 2015, 887-912.
[202]
Rao, R.N.; Mm, B.; Maiti, B.; Thakuria, R.; Chanda, K. Efficient access to imidazo[1,2-a]pyridines/pyrazines/pyrimidines via catalyst-free annulation reaction under microwave irradiation in green solvent. ACS Comb. Sci., 2018, 20(3), 164-171.
[http://dx.doi.org/10.1021/acscombsci.7b00173] [PMID: 29373013]
[203]
Shaabani, A.; Maleki, A.; Moghimi Rad, J.; Soleimani, E. Cellulose sulfuric acid catalyzed one-pot three-component synthesis of imidazoazines. Chem. Pharm. Bull., 2007, 55(6), 957-958.
[http://dx.doi.org/10.1248/cpb.55.957] [PMID: 17541205]
[204]
Bahadorikhalili, S.; Malek, K.; Mahdavi, M. Efficient one pot synthesis of phenylimidazo[1,2‐a]pyridine derivatives using multifunctional copper catalyst supported on β‐cyclodextrin functionalized magnetic graphene oxide. Appl. Organomet. Chem., 2020, 34(11), e5913.
[http://dx.doi.org/10.1002/aoc.5913]
[205]
Rakhtshah, J.; Yaghoobi, F. Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo[1,2-a]pyridines. Int. J. Biol. Macromol., 2019, 139, 904-916.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.054] [PMID: 31400424]
[206]
Shen, C.; Xu, J.; Yu, W.; Zhang, P. A highly active and easily recoverable chitosan@copper catalyst for the C-S coupling and its application in the synthesis of zolimidine. Green Chem., 2014, 16(6), 3007-3012.
[http://dx.doi.org/10.1039/C4GC00161C]
[207]
Bahadorikhalili, S.; Ansari, S.; Hamedifar, H.; Mahdavi, M. The use of magnetic starch as a support for an ionic liquid-β-cyclodextrin based catalyst for the synthesis of imidazothiadiazolamine derivatives. Int. J. Biol. Macromol., 2019, 135(135), 453-461.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.197] [PMID: 31150668]
[208]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functionalized chitosan@Co3O4 as a novel and green catalyst. J. Organomet. Chem., 2019, 880, 75-82.
[http://dx.doi.org/10.1016/j.jorganchem.2018.10.028]
[209]
Safajoo, N.; Mirjalili, B.B.F.; Bamoniri, A. A facile and clean synthesis of indenopyrido[2,3-d]pyrimidines in the presence of Fe3O4@NCs/Cu(II) as bio-based magnetic nano-catalyst. Polycycl. Aromat. Compd., 2021, 41(6), 1241-1248.
[http://dx.doi.org/10.1080/10406638.2019.1666889]
[210]
Siddiqui, I.R.; Rai, P.; Rahila; Srivastava, A. Chitosan: An efficient promoter for the synthesis of 2-aminopyrimidine-5-carbonitrile derivatives in solvent free conditions. New J. Chem., 2014, 38(8), 3791-3795.
[http://dx.doi.org/10.1039/C4NJ00199K]
[211]
Shi, T.; Yin, G.; Wang, X.; Xiong, Y.; Peng, Y.; Li, S.; Zeng, Y.; Wang, Z. Recent advances in the syntheses of pyrroles. Green Synth. Catal, 2023, 4(1), 20-34.
[212]
Konkala, K.; Chowrasia, R.; Manjari, P.S.; Domingues, N.L.C.; Katla, R. β-Cyclodextrin as a recyclable catalyst: Aqueous phase one-pot four-component synthesis of polyfunctionalized pyrroles. RSC Adv., 2016, 6(49), 43339-43344.
[http://dx.doi.org/10.1039/C6RA08335H]
[213]
Hassani, M.; Naimi-Jamal, M.R.; Panahi, L. One‐Pot multicomponent synthesis of substituted pyrroles by using chitosan as an organocatalyst. ChemistrySelect, 2018, 3(2), 666-672.
[http://dx.doi.org/10.1002/slct.201702692]
[214]
Zahedi, S.; Safaei Ghomi, J.; Shahbazi-Alavi, H. Preparation of chitosan nanoparticles from shrimp shells and investigation of its catalytic effect in diastereoselective synthesis of dihydropyrroles. Ultrason. Sonochem., 2018, 40(Pt A), 260-264.
[http://dx.doi.org/10.1016/j.ultsonch.2017.07.023] [PMID: 28946423]
[215]
Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[216]
Shaabani, A.; Borjian Boroujeni, M.; Laeini, M.S. Copper(II) supported on magnetic chitosan: A green nanocatalyst for the synthesis of 2,4,6-triaryl pyridines by C-N bond cleavage of benzylamines. RSC Adv., 2016, 6(33), 27706-27713.
[http://dx.doi.org/10.1039/C6RA00102E]
[217]
Forouzandehdel, S.; Meskini, M.; Rami, M.R. Design and application of (Fe3O4)-GOTfOH based AgNPs doped starch/PEG-poly (acrylic acid) nanocomposite as the magnetic nanocatalyst and the wound dress. J. Mol. Struct., 2020, 1214, 128142.
[http://dx.doi.org/10.1016/j.molstruc.2020.128142]
[218]
Jaiswal, P.K.; Sharma, V.; Mathur, M.; Chaudhary, S. Organocatalytic modified guareschi-thorpe type regioselective synthesis: A unified direct access to 5,6,7,8-tetrahydroquinolines and other alicyclic[b]-fused pyridines. Org. Lett., 2018, 20(19), 6059-6063.
[http://dx.doi.org/10.1021/acs.orglett.8b02132] [PMID: 30215525]
[219]
Siddiqui, Z.N. Chitosan catalyzed an efficient, one pot synthesis of pyridine derivatives. Tetrahedron Lett., 2015, 56(14), 1919-1924.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.111]
[220]
Siddiqui, Z.N.; Khan, K. Friedlander synthesis of novel benzopyranopyridines in the presence of chitosan as heterogeneous, efficient and biodegradable catalyst under solvent-free conditions. New J. Chem., 2013, 37(5), 1595-1602.
[http://dx.doi.org/10.1039/c3nj00069a]
[221]
Shaabani, A.; Rahmati, A.; Badri, Z. Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines. Catal. Commun., 2008, 9(1), 13-16.
[http://dx.doi.org/10.1016/j.catcom.2007.05.021]
[222]
Reddy, B.V.S.; Venkateswarlu, A.; Reddy, G.N.; Reddy, Y.V.R. Chitosan-SO3H: An efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett., 2013, 54(43), 5767-5770.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.165]
[223]
Perumal, R.; Bathrinarayanan, B.; Ghashang, M.; Mansoor, S.S. An efficient one‐pot synthesis of 7,7‐Dimethyl‐2‐(2‐oxo‐2H‐chromen‐3‐yl)‐4‐aryl‐7,8‐dihydroquinolin‐5(6H)‐one derivatives using chitosan-SO3H as biodegradable organocatalyst. J. Heterocycl. Chem., 2019, 56(3), 947-955.
[http://dx.doi.org/10.1002/jhet.3473]
[224]
Ghasemi, Z.; Amale, A.H.; Azizi, S.; Valizadeh, S.; Soleymani, J. Magnetic sulfonated polysaccharides as efficient catalysts for synthesis of isoxazole-5-one derivatives possessing a substituted pyrrole ring, as anti-cancer agents. RSC Adv., 2021, 11(58), 36958-36964.
[http://dx.doi.org/10.1039/D1RA06472J] [PMID: 35494384]
[225]
Dashti, M.; Nikpassand, M.; Mokhtary, M.; Zare Fekri, L. Fe3O4@SP@Chitosan@Fe3O4 nanocomposite: A catalyst with double magnetite parts for sustainable synthesis of novel azo-linked 4-benzylidene-2-phenyloxazol-5-ones. Polycycl. Aromat. Compd., 2022, 43(7), 1-17.
[226]
Safari, J.; Javadian, L. Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Advances, 2014, 4(90), 48973-48979.
[http://dx.doi.org/10.1039/C4RA06618A]
[227]
Safari, J.; Javadian, L. Fe3O4-chitosan nanoparticles as a robust magnetic catalyst for efficient synthesis of 5-substituted hydantoins using zinc cyanide. Iran. J. Catal., 2016, 6(1), 57-64.
[228]
Mozafari, R.; Heidarizadeh, F.; Nikpour, F. MnFe2O4 magnetic nanoparticles modified with chitosan polymeric and phosphotungstic acid as a novel and highly effective green nanocatalyst for regio-and stereoselective synthesis of functionalized oxazolidin-2-ones. Mater. Sci. Eng. C, 2019, 105, 110109.
[http://dx.doi.org/10.1016/j.msec.2019.110109] [PMID: 31546410]
[229]
Wu, H.; Zhou, M.; Li, W.; Zhang, P. Heterogeneous chitosan@nickel (II)-catalyzed tandem radical cyclization of N-arylacrylamides: A general method for constructing fluorinated 3,3-disubstituted oxindoles using perfluoroalkyl iodides. Catal. Commun., 2020, 133, 105832.
[http://dx.doi.org/10.1016/j.catcom.2019.105832]
[230]
Sagir, H.; Yadav, V.B.; Shamim, S.; Kumar, A.; Yadav, N.; Ansari, M.D.; Siddiqui, I.R. An eco‐compatible synthesis of substituted hexahydro‐furo[3,2‐c]pyridine analogues with the chitosan/ionic liquid coupled catalytic system. ChemistrySelect, 2018, 3(38), 10799-10804.
[http://dx.doi.org/10.1002/slct.201802336]
[231]
Safaei-Ghomi, J.; Shahbazi-Alavi, H. Synthesis of dihydrofurans using nano-CuFe2O4@Chitosan. J. Saudi Chem. Soc., 2017, 21(6), 698-707.
[http://dx.doi.org/10.1016/j.jscs.2017.03.002]
[232]
Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Nazemzadeh, S.H. Synthesis of bis‐thiazolidinones using chitosan‐attached nano‐CuFe2O4 as an efficient and retrievable heterogeneous catalyst. J. Chin. Chem. Soc., 2017, 64(10), 1213-1219.
[http://dx.doi.org/10.1002/jccs.201700106]
[233]
Reddy, K.N.; Ramanaiah, S.; Reddy, N.A.K. Chitosan catalyzed one-pot three-component conventional synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]Oxazine-3-Ones. Int. J. Inf. Res. Rev, 2019, 6(6), 2454-2237.
[234]
Keihanfar, M.; Mirjalili, B.B.F. One-pot synthesis of naphtho[1,2-e][1,3]oxazines in the presence of FNAOSiPAMP*/CuII as an almond shell based nanocatalyst. Sci. Rep., 2022, 12(1), 17713.
[http://dx.doi.org/10.1038/s41598-022-22712-0] [PMID: 36271025]
[235]
Maleki, A.; Kamalzare, M. An efficient synthesis of benzodiazepine derivatives via a one-pot, three-component reaction accelerated by a chitosan-supported superparamagnetic iron oxide nanocomposite. Tetrahedron Lett., 2014, 55(50), 6931-6934.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.120]
[236]
Myznikov, L.V.; Vorona, S.V.; Zevatskii, Y.E. Biologically active compounds and drugs in the tetrazole series. Chem. Heterocycl. Compd., 2021, 57(3), 224-233.
[http://dx.doi.org/10.1007/s10593-021-02897-4]
[237]
Motahharifar, N.; Nasrollahzadeh, M.; Taheri-Kafrani, A.; Varma, R.S.; Shokouhimehr, M. Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino-and N-sulfonyl tetrazoles in eco-friendly media. Carbohydr. Polym., 2020, 232, 115819.
[http://dx.doi.org/10.1016/j.carbpol.2019.115819] [PMID: 31952615]
[238]
Khodamorady, M.; Bahrami, K. Fe3O4@BNPs‐CPTMS‐Chitosan‐Pd(0) as an efficient and stable heterogeneous magnetic nanocatalyst for the chemoselective oxidation of alcohols and homoselective synthesis of 5‐subestituted 1H‐tetrazoles. ChemistrySelect, 2019, 4(28), 8183-8194.
[http://dx.doi.org/10.1002/slct.201901497]
[239]
Anuradha; Layek, S.; Agrahari, B.; Pathak, D.D. Chitosan‐supported copper(II) schiff base complexes: Applications in synthesis of 5‐substituted 1h‐tetrazoles and oxidative homo‐coupling of terminal alkynes. ChemistrySelect, 2017, 2(23), 6865-6876.
[http://dx.doi.org/10.1002/slct.201701252]
[240]
Ghamari, K.P.; Bagherzade, G. The anchoring of a Cu(II)-salophen complex on magnetic mesoporous cellulose nanofibers: Green synthesis and an investigation of its catalytic role in tetrazole reactions through a facile one-pot route. RSC Adv., 2021, 11(31), 19203-19220.
[http://dx.doi.org/10.1039/D1RA01913A] [PMID: 35478649]
[241]
Khalafi-Nezhad, A.; Mohammadi, S. Highly efficient synthesis of 1-and 5-substituted 1H-tetrazoles using chitosan derived magnetic ionic liquid as a recyclable biopolymer-supported catalyst. RSC Adv., 2013, 3(13), 4362-4371.
[http://dx.doi.org/10.1039/c3ra23107k]
[242]
Patil, D.R.; Wagh, Y.B.; Ingole, P.G.; Singh, K.; Dalal, D.S. β-Cyclodextrin-mediated highly efficient [2+3] cycloaddition reactions for the synthesis of 5-substituted 1H-tetrazoles. New J. Chem., 2013, 37(10), 3261-3266.
[http://dx.doi.org/10.1039/c3nj00569k]
[243]
Sajjadi, M.; Nasrollahzadeh, M.; Ghafuri, H.; Baran, T.; Orooji, Y.; Baran, N.Y.; Shokouhimehr, M. Modified chitosan-zeolite supported Pd nanoparticles: A reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides. Int. J. Biol. Macromol., 2022, 209(Pt A), 1573-1585.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.04.075] [PMID: 35447267]
[244]
Rammohan, A.; Venkatesh, B.C.; Basha, N.M.; Zyryanov, G.V.; Nageswararao, M. Comprehensive review on natural pharmacophore tethered 1,2,3‐triazoles as active pharmaceuticals. Chem. Biol. Drug Des., 2023, 101(5), 1181-1203.
[http://dx.doi.org/10.1111/cbdd.14148] [PMID: 36131364]
[245]
Jaiswal, S.; Devi, M.; Sharma, N.; Rathi, K.; Dwivedi, J.; Sharma, S. Emerging approaches for synthesis of 1,2,3-triazole derivatives. A review. Org. Prep. Proced. Int., 2022, 54(5), 387-422.
[http://dx.doi.org/10.1080/00304948.2022.2069456]
[246]
Gholinejad, M.; Jeddi, N. Copper nanoparticles supported on agarose as a bioorganic and degradable polymer for multicomponent click synthesis of 1,2,3-triazoles under low copper loading in water. ACS Sustain. Chem. Eng., 2014, 2(12), 2658-2665.
[http://dx.doi.org/10.1021/sc500395b]
[247]
Pourjavadi, A.; Motamedi, A.; Hosseini, S.H.; Nazari, M. Magnetic starch nanocomposite as a green heterogeneous support for immobilization of large amounts of copper ions: Heterogeneous catalyst for click synthesis of 1,2,3-triazoles. RSC Adv., 2016, 6(23), 19128-19135.
[http://dx.doi.org/10.1039/C5RA25519H]
[248]
Maleki, A.; Panahzadeh, M.; Eivazzadeh-keihan, R. Agar: A natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1,2,3-triazoles. Green Chem. Lett. Rev., 2019, 12(4), 395-406.
[http://dx.doi.org/10.1080/17518253.2019.1679263]
[249]
Daraie, M.; Heravi, M.M. A biocompatible chitosan-ionic liquid hybrid catalyst for regioselective synthesis of 1,2,3-triazols. Int. J. Biol. Macromol., 2019, 140, 939-948.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.162] [PMID: 31437506]
[250]
Mahdavinasab, M.; Hamzehloueian, M.; Sarrafi, Y. Preparation and application of magnetic chitosan/graphene oxide composite supported copper as a recyclable heterogeneous nanocatalyst in the synthesis of triazoles. Int. J. Biol. Macromol., 2019, 138(138), 764-772.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.013] [PMID: 31284011]
[251]
Ghasemi, K.; Darroudi, M.; Rahimi, M.; Rouh, H.; Gupta, A.R.; Cheng, C.; Amini, A. Magnetic AgNPs/Fe3O4@chitosan/PVA nanocatalyst for fast one-pot green synthesis of propargylamine and triazole derivatives. New J. Chem., 2021, 45(35), 16119-16130.
[http://dx.doi.org/10.1039/D1NJ02354C]
[252]
Mahdavinia, G.R.; Soleymani, M.; Nikkhoo, M.; Farnia, S.M.F.; Amini, M. Magnetic (chitosan/laponite)-immobilized copper(II) ions: An efficient heterogeneous catalyst for azide-alkyne cycloaddition. New J. Chem., 2017, 41(10), 3821-3828.
[http://dx.doi.org/10.1039/C6NJ03862J]
[253]
Martina, K.; Leonhardt, S.E.S.; Ondruschka, B.; Curini, M.; Binello, A.; Cravotto, G. In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J. Mol. Catal. Chem., 2011, 334(1-2), 60-64.
[http://dx.doi.org/10.1016/j.molcata.2010.10.024]
[254]
Souza, J.F.; Costa, G.P.; Luque, R.; Alves, D.; Fajardo, A.R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: A green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catal. Sci. Technol., 2019, 9(1), 136-145.
[http://dx.doi.org/10.1039/C8CY01796D]
[255]
Shaabani, A.; Shadi, M.; Mohammadian, R.; Javanbakht, S.; Nazeri, M.T.; Bahri, F. Multi‐component reaction‐functionalized chitosan complexed with copper nanoparticles: An efficient catalyst toward A3 coupling and click reactions in water. Appl. Organomet. Chem., 2019, 33(9), e5074.
[http://dx.doi.org/10.1002/aoc.5074]
[256]
Basavaraju, K.C.; Sharma, S.; Singh, A.K.; Im, D.J.; Kim, D.P. Chitosan-microreactor: A versatile approach for heterogeneous organic synthesis in microfluidics. ChemSusChem, 2014, 7(7), 1864-1869.
[http://dx.doi.org/10.1002/cssc.201400012] [PMID: 24828446]
[257]
Chetia, M.; Ali, A.A.; Bhuyan, D.; Saikia, L.; Sarma, D. Magnetically recoverable chitosan-stabilised copper-iron oxide nanocomposite material as an efficient heterogeneous catalyst for azide-alkyne cycloaddition reactions. New J. Chem., 2015, 39(8), 5902-5907.
[http://dx.doi.org/10.1039/C5NJ00754B]
[258]
Tajbakhsh, M.; Naimi-Jamal, M.R. Copper-doped functionalized β-cyclodextrin as an efficient green nanocatalyst for synthesis of 1,2,3-triazoles in water. Sci. Rep., 2022, 12(1), 4948.
[http://dx.doi.org/10.1038/s41598-022-08868-9] [PMID: 35322100]
[259]
Khashei Siuki, H.; Ghamari Kargar, P.; Bagherzade, G. New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci. Rep., 2022, 12(1), 3771.
[http://dx.doi.org/10.1038/s41598-022-07674-7] [PMID: 35260647]
[260]
Ghamari kargar, P.; Bagherzade, G.; Eshghi, H. Design and synthesis of magnetic Fe3O4@NFC-ImSalophCu nanocatalyst based on cellulose nanofibers as a new and highly efficient, reusable, stable and green catalyst for the synthesis of 1,2,3-triazoles. RSC Adv., 2020, 10(54), 32927-32937.
[http://dx.doi.org/10.1039/D0RA06251K] [PMID: 35516478]
[261]
Jennah, O.; Beniazza, R.; Lozach, C.; Jardel, D.; Molton, F.; Duboc, C.; Buffeteau, T.; El Kadib, A.; Lastécouères, D.; Lahcini, M.; Vincent, J.M. Photoredox catalysis at copper(II) on chitosan: Application to photolatent CuAAC. Adv. Synth. Catal., 2018, 360(23), 4615-4624.
[http://dx.doi.org/10.1002/adsc.201800964]
[262]
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] Huisgen cycloaddition. Angew. Chem. Int. Ed., 2009, 48(32), 5916-5920.
[http://dx.doi.org/10.1002/anie.200901309] [PMID: 19575432]
[263]
Anil, K.B.S.P.; Harsha, V.R.K.; Karnakar, K.; Satish, G.; Nageswar, Y.V.D. Copper on chitosan: An efficient and easily recoverable heterogeneous catalyst for one pot synthesis of 1,2,3-triazoles from aryl boronic acids in water at room temperature. Tetrahedron Lett., 2015, 56(15), 1968-1972.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.107]
[264]
Bahadorikhalili, S.; Ashtari, A.; Ma’mani, L.; Ranjbar, P.R.; Mahdavi, M. Copper‐supported β‐cyclodextrin‐functionalized magnetic nanoparticles: Efficient multifunctional catalyst for one‐pot ‘green’ synthesis of 1,2,3‐triazolylquinazolinone derivatives. Appl. Organomet. Chem., 2018, 32(4), e4212.
[http://dx.doi.org/10.1002/aoc.4212]
[265]
Khalil, K.D.; Riyadh, S.M.; Gomha, S.M.; Ali, I. Synthesis, characterization and application of copper oxide chitosan nanocomposite for green regioselective synthesis of [1,2,3]triazoles. Int. J. Biol. Macromol., 2019, 130, 928-937.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.019] [PMID: 30844456]
[266]
Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev., 2017, 117(24), 14091-14200.
[http://dx.doi.org/10.1021/acs.chemrev.7b00343] [PMID: 29166000]
[267]
Milne, K.; Sun, J.; Zaal, E.A.; Mowat, J.; Celie, P.H.N.; Fish, A.; Berkers, C.R.; Forlani, G.; Loayza-Puch, F.; Jamieson, C.; Agami, R. A fragment-like approach to PYCR1 inhibition. Bioorg. Med. Chem. Lett., 2019, 29(18), 2626-2631.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.047] [PMID: 31362921]
[268]
Manujyothi, R.; Aneeja, T.; Anilkumar, G. Solvent-free synthesis of propargylamines: An overview. RSC Adv., 2021, 11(32), 19433-19449.
[http://dx.doi.org/10.1039/D1RA03324G] [PMID: 35479216]
[269]
Jin, T.; Kurdyla, D.; Hrapovic, S.; Leung, A.C.W.; Régnier, S.; Liu, Y.; Moores, A.; Lam, E. Carboxylated chitosan nanocrystals: A synthetic route and application as superior support for gold-catalyzed reactions. Biomacromolecules, 2020, 21(6), 2236-2245.
[http://dx.doi.org/10.1021/acs.biomac.0c00201] [PMID: 32223230]
[270]
Nourmohammadi, M.; Rouhani, S.; Azizi, S.; Maaza, M.; Msagati, T.A.M.; Rostamnia, S.; Hatami, M.; Khaksar, S.; Zarenezhad, E.; Jang, H.W.; Shokouhimehr, M. Magnetic nanocomposite of crosslinked chitosan with 4,6-diacetylresorcinol for gold immobilization (Fe3O4@CS/DAR-Au) as a catalyst for an efficient one-pot synthesis of propargylamine. Mater. Today Commun., 2021, 29, 102798.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102798]
[271]
Rafiee, F.; Rezaie Karder, F. Bio-crosslinking of chitosan with oxidized starch, its functionalization with amino acid and magnetization: As a green magnetic support for silver immobilization and its catalytic activity investigation. Int. J. Biol. Macromol., 2020, 146, 1124-1132.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.238] [PMID: 31726171]
[272]
Arend, M.; Westermann, B.; Risch, N. Modern variants of the mannich reaction. Angew. Chem. Int. Ed., 1998, 37(8), 1044-1070.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E] [PMID: 29711029]
[273]
Shankar, J.; Satish, G.; Kumar, B.S.P.A.; Nageswar, Y.V.D. β-Cyclodextrin catalyzed synthesis of substituted indoles in aqueous medium. Eur. J. Chem., 2014, 5(4), 668-670.
[http://dx.doi.org/10.5155/eurjchem.5.4.668-670.1085]
[274]
Pettignano, A.; Bernardi, L.; Fochi, M.; Geraci, L.; Robitzer, M.; Tanchoux, N.; Quignard, F. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem., 2015, 39(6), 4222-4226.
[http://dx.doi.org/10.1039/C5NJ00349K]
[275]
Sravya, G.; Balakrishna, A.; Zyryanov, G.V.; Mohan, G.; Reddy, C.S.; Bakthavatchala, R.N. Synthesis of α-aminophosphonates by the kabachnikfields reaction. Phosphorus Sulfur Silicon Relat. Elem., 2020, 196(4), 353-381.
[276]
Wang, J.; Liu, X.; Feng, X. Asymmetric strecker reactions. Chem. Rev., 2011, 111(11), 6947-6983.
[http://dx.doi.org/10.1021/cr200057t] [PMID: 21851054]
[277]
Dekamin, M.G.; Azimoshan, M.; Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem., 2013, 15(3), 811-820.
[http://dx.doi.org/10.1039/c3gc36901c]
[278]
Maleki, A.; Haji, R.F.; Ghassemi, M.; Ghafuri, H. Preparation and application of a magnetic organic-inorganic hybrid nanocatalyst for the synthesis of α-aminonitriles. J. Chem. Sci., 2017, 129(4), 457-462.
[http://dx.doi.org/10.1007/s12039-017-1253-y]
[279]
Valizadeh, S.; Ghasemi, Z.; Shahrisa, A.; Notash, B.; Pirouzmand, M.; Kabiri, R. Magnetic chitosan nanocomposite: As a novel catalyst for the synthesis of new derivatives of N-sulfonylamidine and N-sulfonylimidate. Carbohydr. Polym., 2019, 226, 115310.
[http://dx.doi.org/10.1016/j.carbpol.2019.115310] [PMID: 31582060]
[280]
Hamzavi, S.F.; Jamili, S.; Yousefzadi, M.; Mashinchian, M.A.; Amrollahi, B.N. Immobilization of platinum nanoparticles on the functionalized chitosan particles: An efficient catalyst for reduction of nitro compounds and tandem reductive Ugi reactions. Mol. Divers., 2020, 24(4), 985-995.
[http://dx.doi.org/10.1007/s11030-019-10007-y] [PMID: 31667649]
[281]
Bakhtiarian, M.; Khodaei, M.M. Oxidized pectin modified by sulfonic acid groups as a bio-derived solid acid for the synthesis of 1-amidoalkyl-2-naphthols. J. Mol. Struct., 2023, 1285(5), 135543.
[http://dx.doi.org/10.1016/j.molstruc.2023.135543]
[282]
Aguilera, D.A.; Spinozzi Di Sante, L.; Pettignano, A.; Riccioli, R.; Roeske, J.; Albergati, L.; Corti, V.; Fochi, M.; Bernardi, L.; Quignard, F.; Tanchoux, N. Adsorption of a chiral amine on alginate gel beads and evaluation of its efficiency as heterogeneous enantioselective catalyst. Eur. J. Org. Chem., 2019, 2019(24), 3842-3849.
[http://dx.doi.org/10.1002/ejoc.201900247]
[283]
Gomha, S.M.; Riyadh, S.M. Synthesis of triazolo[4,3-b] [1,2,4,5]tetrazines and triazolo[3,4-b][1,3,4] thiadiazines using chitosan as heterogeneous catalyst under microwave irradiation. ARKIVOC, 2009, 2009(11), 58-68.
[http://dx.doi.org/10.3998/ark.5550190.0010.b06]
[284]
Khalil, K.; Al-Matar, H.; Elnagdi, M. Chitosan as an eco-friendly heterogeneous catalyst for Michael type addition reactions. A simple and efficient route to pyridones and phthalazines. Eur. J. Chem., 2010, 1(4), 252-258.
[http://dx.doi.org/10.5155/eurjchem.1.4.252-258.211]
[285]
Tayade, Y.A.; Jangale, A.D.; Dalal, D.S. Simple and highly efficient synthesis of thioamide derivatives using β‐cyclodextrin as supramolecular catalyst in water. ChemistrySelect, 2018, 3(31), 8895-8900.
[http://dx.doi.org/10.1002/slct.201801553]
[286]
Hassaneen, H.M.; Hassaneen, H.M.E.; Mohammed, Y.S.; Pagni, R.M. Synthesis, reactions and antibacterial activity of 3-Acetyl[1,2,4]triazolo[3,4-a]isoquinoline derivatives using chitosan as heterogeneous catalyst under microwave irradiation. Z. Naturforsch. B. J. Chem. Sci., 2011, 66(3), 299-310.
[http://dx.doi.org/10.1515/znb-2011-0313]
[287]
Hassaneen, H.M.; Hassaneen, H.M.E.; Mohammed, Y.S. Reactivity of 1-methylisoquinoline synthesis of pyrazolyl triazoloisoquinoline and thiadiazolyl isoquinoline derivatives. Nat. Sci., 2011, 3(8), 651-660.
[http://dx.doi.org/10.4236/ns.2011.38089]
[288]
Hassaneen, H.M.E. Chemistry of the enaminone of 1-acetylnaphthalene under microwave irradiation using chitosan as a green catalyst. Molecules, 2011, 16(1), 609-623.
[http://dx.doi.org/10.3390/molecules16010609] [PMID: 21242941]
[289]
Ghozlan, S.A.S.; Ahmed, A.G.; Abdelhamid, I.A. Regioorientation in the addition reaction of α‐substituted cinnamonitrile to enamines utilizing chitosan as a green catalyst: Unambiguous structural characterization using 2D HMBC NMR spectroscopy. J. Heterocycl. Chem., 2016, 53(3), 817-823.
[http://dx.doi.org/10.1002/jhet.2341]
[290]
Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem. Heterocycl. Compd., 2015, 51(11-12), 1030-1038.
[http://dx.doi.org/10.1007/s10593-016-1815-9]
[291]
Riyadh, S.; Khalil, K.; Aljuhani, A. Chitosan-MgO nanocomposite: One pot preparation and its utility as an ecofriendly biocatalyst in the synthesis of thiazoles and [1,3,4]thiadiazoles. Nanomaterials, 2018, 8(11), 928.
[http://dx.doi.org/10.3390/nano8110928] [PMID: 30413060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy