Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Synthetic Routes for Biologically Active Tetrahydroquinoxalines and Derivatives: A Comprehensive Review

Author(s): Ashis Kumar Sahoo* and Aditya Bhattacharyya

Volume 28, Issue 3, 2024

Published on: 31 January, 2024

Page: [161 - 175] Pages: 15

DOI: 10.2174/0113852728285439240109071659

Price: $65

Abstract

Tetrahydroquinoxalines are found in many biologically and pharmacologically active small molecules. In the past two decades, significant progress has been made in the development of novel synthetic routes for the preparation of biologically active tetrahydroquinoxalines and their derivatives. This synthetic review aims to provide a comprehensive overview of the advancements in the field of various synthetic strategies and methodologies employed for the synthesis of tetrahydroquinoxaline scaffolds during this period. The review emphasizes the diverse synthetic approaches employed, including cycloaddition reactions, condensation reactions, intramolecular cyclization reactions, ring expansion reactions, hydrogenation reactions, and other miscellaneous methods.

Keywords: Tetrahydroquinoxalines, ring-expansion reactions, cycloadditions reaction, hydrogenation reactions, condensation reactions, intramolecular cyclization reactions.

Next »
Graphical Abstract
[1]
ary, C.T.; Jones, Z.S.; Groneberg, R.D.; Burgess, L.E.; Mareska, D.A.; Drew, M.D.; Blake, J.F.; Laird, E.R.; Balachari, D.; O’Sullivan, M.; Allen, A.; Marsh, V. Tetrazole and ester substituted tetrahydoquinoxalines as potent cholesteryl ester transfer protein inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(9), 2608-2613.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.112] [PMID: 17331716]
[2]
Sikorski, J.A. Oral cholesteryl ester transfer protein (CETP) inhibitors: A potential new approach for treating coronary artery disease. J. Med. Chem., 2006, 49(1), 1-22.
[http://dx.doi.org/10.1021/jm058224l] [PMID: 16392785]
[3]
Jacobsen, E.J.; Stelzer, L.S.; Belonga, K.L.; Carter, D.B.; Im, W.B.; Sethy, V.H.; Tang, A.H.; VonVoigtlander, P.F.; Petke, J.D. 3-phenyl-substituted imidazo[1,5-a]quinoxalin-4-ones and imidazo[1,5-a]quinoxaline ureas that have high affinity at the GABAA/benzodiazepine receptor complex. J. Med. Chem., 1996, 39(19), 3820-3836.
[http://dx.doi.org/10.1021/jm960070+] [PMID: 8809170]
[4]
Ohtake, Y.; Naito, A.; Hasegawa, H.; Kawano, K.; Morizono, D.; Taniguchi, M.; Tanaka, Y.; Matsukawa, H.; Naito, K.; Oguma, T.; Ezure, Y.; Tsuriya, Y. Novel vasopressin V2 receptor-selective antagonists, pyrrolo[2,1-a]quinoxaline and pyrrolo[2,1-c][1,4]benzodiazepine derivatives. Bioorg. Med. Chem., 1999, 7(6), 1247-1254.
[http://dx.doi.org/10.1016/S0968-0896(99)00049-8] [PMID: 10428398]
[5]
Benkovic, S.J.; Benkovic, P.A.; Comfort, D.R. Models for tetrahydrofolic acid. I. Condensation of formaldehyde with tetrahydroquinoxaline analogs. J. Am. Chem. Soc., 1969, 91(19), 5270-5279.
[http://dx.doi.org/10.1021/ja01047a016]
[6]
Benkovic, S.J.; Benkovic, P.A.; Chrzanowski, R. Studies on models for tetrahydrofolic acid. II. Additional observations on the mechanism for condensation of formaldehyde with tetrahydroquinoxaline analogs. J. Am. Chem. Soc., 1970, 92(3), 523-528.
[http://dx.doi.org/10.1021/ja00706a017]
[7]
Benkovic, S.J.; Bullard, W.P.; Benkovic, P.A. Models for tetrahydrofolic acid. III. Hydrolytic interconversions of the tetrahydroquinoxaline analogs at the formate level of oxidation. J. Am. Chem. Soc., 1972, 94(21), 7542-7549.
[http://dx.doi.org/10.1021/ja00776a043] [PMID: 5072867]
[8]
Mertes, M.P.; Lin, A.J. Cofactor inhibition of thymidylate synthetase. Tetrahydrofolic acid analogs. J. Med. Chem., 1970, 13(1), 77-82.
[http://dx.doi.org/10.1021/jm00295a020] [PMID: 4904497]
[9]
Wilson, J.E.; Kurukulasuriya, R.; Reibarkh, M.; Reiter, M.; Zwicker, A.; Zhao, K.; Zhang, F.; Anand, R.; Colandrea, V.J.; Cumiskey, A.M.; Crespo, A.; Duffy, R.A.; Murphy, B.A.; Mitra, K.; Johns, D.G.; Duffy, J.L.; Vachal, P. Discovery of novel indoline cholesterol ester transfer protein inhibitors (CETP) through a structure-guided approach. ACS Med. Chem. Lett., 2016, 7(3), 261-265.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00404] [PMID: 26985312]
[10]
Kuhl, A.; Kolkhof, P.; Telan, L.; Peters, J-G.; Lustig, K.; Kast, R.; Münter, K.; Stasch, J-P.; Tinel, H. Tetrahydroquinoxalines and their use as m2 acetylcholine receptor agonists. U.S. Patent WO2005028451A1, March 31, 2005.
[11]
Torisu, K.; Kobayashi, K.; Iwahashi, M.; Nakai, Y.; Onoda, T.; Nagase, T.; Sugimoto, I.; Okada, Y.; Matsumoto, R.; Nanbu, F.; Ohuchida, S.; Nakai, H.; Toda, M. Discovery of a new class of potent, selective, and orally active prostaglandin D2 receptor antagonists. Bioorg. Med. Chem., 2004, 12(20), 5361-5378.
[http://dx.doi.org/10.1016/j.bmc.2004.07.048] [PMID: 15388164]
[12]
Law, R.P.; Atkinson, S.J.; Bamborough, P.; Chung, C.; Demont, E.H.; Gordon, L.J.; Lindon, M.; Prinjha, R.K.; Watson, A.J.B.; Hirst, D.J. Discovery of tetrahydroquinoxalines as Bromodomain and Extra-Terminal domain (BET) inhibitors with selectivity for the second bromodomain. J. Med. Chem., 2018, 61(10), 4317-4334.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01666] [PMID: 29656650]
[13]
Ramage, G.R.; Trappe, G. 845. Tetrahydroquinoxalines. A new route from o-amino-N-2′-hydroxyethylanilines. J. Chem. Soc., 1952, 0(0), 4406-4409.
[http://dx.doi.org/10.1039/JR9520004406]
[14]
Smith, R.F.; Rebel, W.J.; Beach, T.N. Convenient syntheses of 1,2,3,4-tetrahydroquinoxalines. J. Org. Chem., 1959, 24(2), 205-207.
[http://dx.doi.org/10.1021/jo01084a014]
[15]
De Selms, R.C.; Greaves, R.J.; Schleigh, W.R. The preparations of some substituted quinoxalines and 1,2,3,4‐tetrahydroquinoxalines. J. Heterocycl. Chem., 1974, 11(4), 595-597.
[http://dx.doi.org/10.1002/jhet.5570110425]
[16]
Clarke, P.; Moorhouse, A. 911. The synthesis of some 6-substituted 1,2,3,4-tetrahydroquinoxalines. J. Chem. Soc., 1963, 4763.
[http://dx.doi.org/10.1039/jr9630004763]
[17]
Houminer, Y. Synthesis and reactions of some 5,6,7,8‐tetrahydroquinoxaline derivatives. J. Heterocycl. Chem., 1981, 18(1), 15-17.
[http://dx.doi.org/10.1002/jhet.5570180103]
[18]
Yamaguchi, R.; Fujita, K.; Zhu, M. Recent progress of new catalytic synthetic methods for nitrogen heterocycles based on hydrogen transfer reactions. Heterocycles, 2010, 81(5), 1093.
[http://dx.doi.org/10.3987/REV-09-665]
[19]
Nair, V.; Dhanya, R.; Rajesh, C.; Bhadbhade, M.M.; Manoj, K. Lewis acid-promoted annulation of O-quinonediimines by allylstannane: A facile synthesis of quinoxaline derivatives. Org. Lett., 2004, 6(25), 4743-4745.
[http://dx.doi.org/10.1021/ol048004m] [PMID: 15575675]
[20]
Nair, V.; Dhanya, R.; Vidya, N.; Devipriya, S. Lewis acid catalyzed addition of allylsilane to o-quinonediimides: Formal diels-alder reaction versus allylation. Synthesis, 2006, 2006(1), 107-110.
[http://dx.doi.org/10.1055/s-2005-918494]
[21]
Yang, S.C.; Liu, P.C.; Feng, W.H. Palladium-catalyzed tandem allylation of 1,2-phenylenediamines with cis-1,4-diacetoxy-2-butene. Tetrahedron Lett., 2004, 45(25), 4951-4954.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.140]
[22]
Massacret, M.; Lhoste, P.; Sinou, D. Palladium(0)-catalyzed asymmetric synthesis of 1,2,3,4-tetrahydro-2-vinylquinoxalines. Eur. J. Org. Chem., 1999, 1999(1), 129-134.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199901)1999:1<129::AID-EJOC129>3.0.CO;2-6]
[23]
Li, J.L.; Han, B.; Jiang, K.; Du, W.; Chen, Y.C. Organocatalytic enantioselective hetero-Diels-Alder reaction of aldehydes and o-benzoquinone diimide: Synthesis of optically active hydroquinoxalines. Bioorg. Med. Chem. Lett., 2009, 19(14), 3952-3954.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.013] [PMID: 19318249]
[24]
Abraham, C.J.; Paull, D.H.; Scerba, M.T.; Grebinski, J.W.; Lectka, T. Catalytic, enantioselective bifunctional inverse electron demand hetero-Diels-Alder reactions of ketene enolates and o-benzoquinone diimides. J. Am. Chem. Soc., 2006, 128(41), 13370-13371.
[http://dx.doi.org/10.1021/ja065754d] [PMID: 17031945]
[25]
Wang, D.; Yu, H.; Sun, S.; Zhong, F. Intermolecular vicinal diaminative assembly of tetrahydroquinoxalines via metal-free oxidative [4 + 2] cycloaddition strategy. Org. Lett., 2020, 22(6), 2425-2430.
[http://dx.doi.org/10.1021/acs.orglett.0c00624] [PMID: 32148049]
[26]
Wu, Z.; Wen, K.; Zhang, J.; Zhang, W. Pd(II)-catalyzed aerobic intermolecular 1,2-diamination of conjugated dienes: A regio-and chemoselective [4 + 2] annulation for the synthesis of tetrahydroquinoxalines. Org. Lett., 2017, 19(11), 2813-2816.
[http://dx.doi.org/10.1021/acs.orglett.7b00919] [PMID: 28508645]
[27]
Liu, S.; Zhou, Y.; Sui, Y.; Liu, H.; Zhou, H. B2(OH)4-mediated one-pot synthesis of tetrahydroquinoxalines from 2-amino(nitro)anilines and 1,2-dicarbonyl compounds in water. Org. Chem. Front., 2017, 4(11), 2175-2178.
[http://dx.doi.org/10.1039/C7QO00604G]
[28]
Pan, Y.; Chen, C.; Xu, X.; Zhao, H.; Han, J.; Li, H.; Xu, L.; Fan, Q.; Xiao, J. Metal-free tandem cyclization/hydrosilylation to construct tetrahydroquinoxalines. Green Chem., 2018, 20(2), 403-411.
[http://dx.doi.org/10.1039/C7GC03095A]
[29]
Merişor, E.; Conrad, J.; Klaiber, I.; Mika, S.; Beifuss, U. Triethyl phosphite mediated domino reaction: direct conversion of ω-nitroalkenes into N-heterocycles. Angew. Chem. Int. Ed., 2007, 46(18), 3353-3355.
[http://dx.doi.org/10.1002/anie.200605260] [PMID: 17373015]
[30]
Mukhopadhyay, R.; Kundu, N.G. A highly regio-and stereoselective novel route To (E)-2-Alkyl (Aryl)idene-1,2,3,4-tetrahydroquinoxalines through a palladium-catalysed arylation and concurrent heteroannulation process. Synlett, 2001, 2001(7), 1143-1145.
[http://dx.doi.org/10.1055/s-2001-15135]
[31]
Majumdar, K.C.; Ray, K.; Ponra, S. A new efficient method for the synthesis of 3,4-dihydro-2H-1,4-benzoxazines via iodocyclization. Tetrahedron Lett., 2010, 51(41), 5437-5439.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.016]
[32]
Bunce, R.A.; Herron, D.M.; Hale, L.Y. Dihydrobenzoxazines and tetrahydroquinoxalines by a tandem reduction‐reductive amination reaction. J. Heterocycl. Chem., 2003, 40(6), 1031-1039.
[http://dx.doi.org/10.1002/jhet.5570400611]
[33]
Krchňák, V.; Smith, J.; Vágner, J. A solid-phase traceless synthesis of tetrahydroquinoxalines. Tetrahedron Lett., 2001, 42(13), 2443-2446.
[http://dx.doi.org/10.1016/S0040-4039(01)00197-6]
[34]
Bunce, R.A.; Herron, D.M.; Ackerman, M.L. Aryl-fused nitrogen heterocycles by a tandem reduction-Michael addition reaction. J. Org. Chem., 2000, 65(9), 2847-2850.
[http://dx.doi.org/10.1021/jo991899+] [PMID: 10808471]
[35]
Huang, J.; Li, G.; Yang, G.; Fu, D.; Nie, X.; Cui, X.; Zhao, J.; Tang, Z. Catalytic asymmetric synthesis of N-substituted tetrahydroquinoxalines via regioselective Heyns rearrangement and stereoselective transfer hydrogenation in one pot. Chem. Sci., 2021, 12(13), 4789-4793.
[http://dx.doi.org/10.1039/D0SC06264B] [PMID: 34168757]
[36]
Qian, C.; Tang, W. A versatile synthesis of vinyl-substituted heterocycles via regio-and enantioselective Pd-catalyzed tandem allylic substitution. Org. Lett., 2020, 22(11), 4483-4488.
[http://dx.doi.org/10.1021/acs.orglett.0c01490] [PMID: 32453581]
[37]
Padín, D.; Varela, J.A.; Saá, C. Ruthenium-catalyzed tandem carbene/alkyne metathesis/N–H insertion: Synthesis of benzofused six-membered azaheterocycles. Org. Lett., 2020, 22(7), 2621-2625.
[http://dx.doi.org/10.1021/acs.orglett.0c00596] [PMID: 32174120]
[38]
Ghorai, M.K.; Bhattacharyya, A.; Das, S.; Chauhan, N. Ring expansions of activated aziridines and azetidines. Top. Heterocycl. Chem., 2015, 41, 49-142.
[http://dx.doi.org/10.1007/7081_2015_159]
[39]
Bhattacharyya, A.; Shahi, C.K.; Pradhan, S.; Ghorai, M.K. Stereospecific synthesis of 1,4,5,6-tetrahydropyrimidines via domino ring-opening cyclization of activated aziridines with α-acidic isocyanides. Org. Lett., 2018, 20(10), 2925-2928.
[http://dx.doi.org/10.1021/acs.orglett.8b00986] [PMID: 29738257]
[40]
Ghorai, M.K.; Shukla, D.; Bhattacharyya, A. Syntheses of chiral β-and γ-amino ethers, morpholines, and their homologues via nucleophilic ring-opening of chiral activated aziridines and azetidines. J. Org. Chem., 2012, 77(8), 3740-3753.
[http://dx.doi.org/10.1021/jo300002u] [PMID: 22448664]
[41]
Bhattacharyya, A.; Kavitha, C.V.; Ghorai, M.K. Stereospecific synthesis of 2-iminothiazolidines via domino ring-opening cyclization of activated aziridines with aryl-and alkyl isothiocyanates. J. Org. Chem., 2016, 81(15), 6433-6443.
[http://dx.doi.org/10.1021/acs.joc.6b01551] [PMID: 27425856]
[42]
Ghorai, M.K.; Sahoo, A.K.; Bhattacharyya, A. Syntheses of imidazo-, oxa-, and thiazepine ring systems via ring-opening of aziridines/Cu-catalyzed C-N/C-C bond formation. J. Org. Chem., 2014, 79(14), 6468-6479.
[http://dx.doi.org/10.1021/jo500888j] [PMID: 24955856]
[43]
Ghorai, M.K.; Shahi, C.K.; Bhattacharyya, A.; Sayyad, M.; Mal, A.; Wani, I.A.; Chauhan, N. Syntheses of tetrahydrobenzodiazepines via SN2-type ring-opening of activated aziridines with 2-bromobenzylamine followed by copper-powder-mediated C-N bond formation. Asian J. Org. Chem., 2015, 4(10), 1103-1111.
[http://dx.doi.org/10.1002/ajoc.201500224]
[44]
Pradhan, S.; Chauhan, N.; Shahi, C.K.; Bhattacharyya, A.; Ghorai, M.K. Stereoselective synthesis of hexahydroimidazo[1,2-a]quinolines via SN2-type ring-opening hydroarylation–hydroamination cascade cyclization of activated aziridines with N-propargylanilines. Org. Lett., 2020, 22(20), 7903-7908.
[http://dx.doi.org/10.1021/acs.orglett.0c02801] [PMID: 32985195]
[45]
Bhattacharyya, A.; Das, S.; Chauhan, N.; Biswas, P.K.; Ghorai, M.K. Facile synthesis of oxime amino ethers via Lewis acid catalyzed SN2-type ring opening of activated aziridines with aryl aldehyde oximes. Synlett, 2020, 31(7), 708-712.
[http://dx.doi.org/10.1055/s-0039-1691596]
[46]
Saha, A.; Bhattacharyya, A.; Talukdar, R.; Ghorai, M.K. Stereospecific syntheses of enaminonitriles and β-enaminoesters via Domino Ring-Opening Cyclization (DROC) of activated cyclopropanes with pronucleophilic malononitriles. J. Org. Chem., 2018, 83(4), 2131-2144.
[http://dx.doi.org/10.1021/acs.joc.7b03033] [PMID: 29342362]
[47]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Ghorai, M.K. Stereoselective synthesis of 3-spiropiperidino indolenines via SN2-type ring opening of activated aziridines with 1H-indoles/Pd-catalyzed spirocyclization with propargyl carbonates. Chem. Commun., 2018, 54(62), 8583-8586.
[http://dx.doi.org/10.1039/C8CC04249G] [PMID: 29951688]
[48]
Kumar Shahi, C.; Pradhan, S.; Bhattacharyya, A.; Kumar, R.; Ghorai, M.K. Accessing quinoxalines by ring-opening/cyclization/detosylation/aromatizetion of activated aziridines with 2-bromoanilines: Synthesis of tyrphostin AG 1296. Eur. J. Org. Chem., 2017, 2017(24), 3487-3495.
[http://dx.doi.org/10.1002/ejoc.201700506]
[49]
Shahi, C.K.; Bhattacharyya, A.; Nanaji, Y.; Ghorai, M.K. A stereoselective route to tetrahydrobenzoxazepines and tetrahydrobenzodiazepines via ring-opening and aza-Michael addition of activated aziridines with 2-hydroxyphenyl and 2-aminophenyl acrylates. J. Org. Chem., 2017, 82(1), 37-47.
[http://dx.doi.org/10.1021/acs.joc.6b01919] [PMID: 27704829]
[50]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Chauhan, N.; Ghorai, M.K. Syntheses of tetrahydrobenzoazepinoindoles and dihydrobenzodiazepinoindoles via ring-opening cyclization of activated aziridines with 2-(2-bromophenyl)-1H-indoles. Org. Lett., 2017, 19(13), 3438-3441.
[http://dx.doi.org/10.1021/acs.orglett.7b01397] [PMID: 28613075]
[51]
Pradhan, S.; Shahi, C.K.; Bhattacharyya, A.; Chauhan, N.; Ghorai, M.K. Divergent and stereospecific routes to five to eight-membered 1,3-and 1,4-di-aza-heterocycles via ring-opening cyclization of activated aziridines with aryl amines. ChemistrySelect, 2017, 2(1), 550-556.
[http://dx.doi.org/10.1002/slct.201602062]
[52]
Bhattacharyya, A. Synthetic routes to 1,4,5,6-tetrahydropyrimidines: An overview and recent advances. Curr. Org. Chem., 2019, 23(17), 1843-1856.
[http://dx.doi.org/10.2174/1385272823666191007163310]
[53]
Bhattacharyya, A. Synthetic routes to 2-iminothiazolidines: State-of-the-art 2006-2020. Curr. Org. Chem., 2020, 24(24), 2823-2844.
[http://dx.doi.org/10.2174/1385272824999201019162400]
[54]
Chan Kim, J.; Choi, H.G.; Kim, M.S.; Ha, H.J.; Lee, W.K. An efficient synthesis of enantiomerically pure aromatic-fused N-containing heterocycles from common chiral aziridines. Tetrahedron, 2010, 66(40), 8108-8114.
[http://dx.doi.org/10.1016/j.tet.2010.07.027]
[55]
Xu, G.; Yang, G.; Wang, Y.; Shao, P.L.; Yau, J.N.N.; Liu, B.; Zhao, Y.; Sun, Y.; Xie, X.; Wang, S.; Zhang, Y.; Xia, L.; Zhao, Y. Stereoconvergent, redox‐neutral access to tetrahydroquinoxalines through relay epoxide opening/amination of alcohols. Angew. Chem. Int. Ed., 2019, 58(40), 14082-14088.
[http://dx.doi.org/10.1002/anie.201906199] [PMID: 31270918]
[56]
Ghorai, M.K.; Sahoo, A.K.; Kumar, S. Synthetic route to chiral tetrahydroquinoxalines via ring-opening of activated aziridines. Org. Lett., 2011, 13(22), 5972-5975.
[http://dx.doi.org/10.1021/ol2023906] [PMID: 22004011]
[57]
Nosood, Y.L.; Ziyaei Halimehjani, A.; González, F.V. Regioselective opening of nitroepoxides with unsymmetrical diamines. J. Org. Chem., 2018, 83(3), 1252-1258.
[http://dx.doi.org/10.1021/acs.joc.7b02795] [PMID: 29313339]
[58]
Chen, Q.A.; Wang, D.S.; Zhou, Y.G.; Duan, Y.; Fan, H.J.; Yang, Y.; Zhang, Z. Convergent asymmetric disproportionation reactions: Metal/Brønsted acid relay catalysis for enantioselective reduction of quinoxalines. J. Am. Chem. Soc., 2011, 133(16), 6126-6129.
[http://dx.doi.org/10.1021/ja200723n] [PMID: 21466202]
[59]
Cartigny, D.; Berhal, F.; Nagano, T.; Phansavath, P.; Ayad, T.; Genêt, J.P.; Ohshima, T.; Mashima, K.; Ratovelomanana-Vidal, V. General asymmetric hydrogenation of 2-alkyl-and 2-aryl-substituted quinoxaline derivatives catalyzed by iridium-difluorphos: Unusual halide effect and synthetic application. J. Org. Chem., 2012, 77(10), 4544-4556.
[http://dx.doi.org/10.1021/jo300455y] [PMID: 22519599]
[60]
Mršić, N.; Jerphagnon, T.; Minnaard, A.J.; Feringa, B.L.; de Vries, J.G. Asymmetric hydrogenation of quinoxalines catalyzed by iridium/PipPhos. Adv. Synth. Catal., 2009, 351(16), 2549-2552.
[http://dx.doi.org/10.1002/adsc.200900522]
[61]
Rueping, M.; Tato, F.; Schoepke, F.R. The first general, efficient and highly enantioselective reduction of quinoxalines and quinoxalinones. Chemistry, 2010, 16(9), 2688-2691.
[http://dx.doi.org/10.1002/chem.200902907] [PMID: 20140920]
[62]
Tang, W.; Xu, L.; Fan, Q.H.; Wang, J.; Fan, B.; Zhou, Z.; Lam, K.; Chan, A.S.C. Asymmetric hydrogenation of quinoxalines with diphosphinite ligands: A practical synthesis of enantioenriched, substituted tetrahydroquinoxalines. Angew. Chem. Int. Ed., 2009, 48(48), 9135-9138.
[http://dx.doi.org/10.1002/anie.200904518] [PMID: 19876991]
[63]
Gao, C.; Xuan, Q.; Song, Q. Cu‐catalyzed chemoselective reduction of N‐heteroaromatics with NH3·BH3 in aqueous solution. Chin. J. Chem., 2021, 39(9), 2504-2508.
[http://dx.doi.org/10.1002/cjoc.202100259]
[64]
Zhong, Y.; Zhou, T.; Zhang, Z.; Chang, R. Copper-catalyzed transfer hydrogenation of N-heteroaromatics with an oxazaborolidine complex. ACS Omega, 2019, 4(5), 8487-8494.
[http://dx.doi.org/10.1021/acsomega.9b00930] [PMID: 31459938]
[65]
Sun, S.; Nagorny, P. Exploration of chiral diastereomeric spiroketal (SPIROL)-based phosphinite ligands in asymmetric hydrogenation of heterocycles. Chem. Commun., 2020, 56(60), 8432-8435.
[http://dx.doi.org/10.1039/D0CC03088K] [PMID: 32579621]
[66]
Huang, R.; Chen, X.; Mou, C.; Luo, G.; Li, Y.; Li, X.; Xue, W.; Jin, Z.; Chi, Y.R. Carbene-catalyzed α-carbon amination of chloroaldehydes for enantioselective access to dihydroquinoxaline derivatives. Org. Lett., 2019, 21(11), 4340-4344.
[http://dx.doi.org/10.1021/acs.orglett.9b01520] [PMID: 31117715]
[67]
Chen, M.W.; Deng, Z.; Yang, Q.; Huang, J.; Peng, Y. Enantioselective synthesis of trifluoromethylated dihydroquinoxalinones via palladium-catalyzed hydrogenation. Org. Chem. Front., 2019, 6(6), 746-750.
[http://dx.doi.org/10.1039/C8QO01361F]
[68]
Zhang, Z.; Du, H. A highly cis-selective and enantioselective metal-free hydrogenation of 2,3-disubstituted quinoxalines. Angew. Chem. Int. Ed., 2015, 54(2), 623-626.
[http://dx.doi.org/10.1002/anie.201409471] [PMID: 25393413]
[69]
Pi, D.; Zhou, H.; Cui, P.; He, R.; Sui, Y. Silver‐catalyzed biomimetic transfer hydrogenation of n‐heteroaromatics with hantzsch esters as NADH analogues. ChemistrySelect, 2017, 2(13), 3976-3979.
[http://dx.doi.org/10.1002/slct.201700327]
[70]
Qin, J.; Chen, F.; Ding, Z.; He, Y.M.; Xu, L.; Fan, Q.H. Asymmetric hydrogenation of 2-and 2,3-substituted quinoxalines with chiral cationic ruthenium diamine catalysts. Org. Lett., 2011, 13(24), 6568-6571.
[http://dx.doi.org/10.1021/ol2029096] [PMID: 22098608]
[71]
Arai, N.; Saruwatari, Y.; Isobe, K.; Ohkuma, T. Asymmetric hydrogenation of quinoxalines, benzoxazines, and a benzothiazine catalyzed by chiral ruthenabicyclic complexes. Adv. Synth. Catal., 2013, 355(14-15), 2769-2774.
[http://dx.doi.org/10.1002/adsc.201300604]
[72]
Nagano, T.; Iimuro, A.; Schwenk, R.; Ohshima, T.; Kita, Y.; Togni, A.; Mashima, K. Additive effects of amines on asymmetric hydrogenation of quinoxalines catalyzed by chiral iridium complexes. Chemistry, 2012, 18(37), 11578-11592.
[http://dx.doi.org/10.1002/chem.201201366] [PMID: 22915378]
[73]
Tan, J.; Tang, W.; Sun, Y.; Jiang, Z.; Chen, F.; Xu, L.; Fan, Q.; Xiao, J. pH-Regulated transfer hydrogenation of quinoxalines with a Cp*Ir-diamine catalyst in aqueous media. Tetrahedron, 2011, 67(34), 6206-6213.
[http://dx.doi.org/10.1016/j.tet.2011.06.067]
[74]
Fleischer, S.; Zhou, S.; Werkmeister, S.; Junge, K.; Beller, M. Cooperative iron-Brønsted acid catalysis: Enantioselective hydrogenation of quinoxalines and 2H-1,4-benzoxazines. Chemistry, 2013, 19(16), 4997-5003.
[http://dx.doi.org/10.1002/chem.201204236] [PMID: 23463578]
[75]
Li, S.; Meng, W.; Du, H. Asymmetric transfer hydrogenations of 2,3-disubstituted quinoxalines with ammonia borane. Org. Lett., 2017, 19(10), 2604-2606.
[http://dx.doi.org/10.1021/acs.orglett.7b00935] [PMID: 28459591]
[76]
Lamb, K.J.; Dowsett, M.R.; North, M.; Parker, R.R.; Whitwood, A.C. Unprecedented reductive cyclisation of salophen ligands to tetrahydroquinoxalines during metal complex formation. Chem. Commun., 2020, 56(35), 4844-4847.
[http://dx.doi.org/10.1039/D0CC01192D] [PMID: 32236256]
[77]
Fu, Q.; Zhang, Y.; Liu, B.; Guo, F. A new 1,2,3,4-tetrahydroquinoxaline derivative combining baicalein and 1,2-diphenylethylenediamine moieties: Structure and its fluorescence-based detection of nitroaromatics. J. Mol. Struct., 2018, 1171, 69-75.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.089]
[78]
Imanishi, M.; Sonoda, M.; Miyazato, H.; Sugimoto, K.; Akagawa, M.; Tanimori, S. Sequential synthesis, olfactory properties, and biological activity of quinoxaline derivatives. ACS Omega, 2017, 2(5), 1875-1885.
[http://dx.doi.org/10.1021/acsomega.7b00124] [PMID: 30023648]
[79]
Fu, Y.; Wang, J.Y.; Chen, W.G.; Li, Y.; Zhao, L.X.; Gao, S.; Ye, F. Facile synthesis and bioactivity of novel N,N′‐disubstituted‐1,2,3,4‐tetrahydro-quinoxalines. J. Heterocycl. Chem., 2017, 54(6), 3023-3029.
[http://dx.doi.org/10.1002/jhet.2911]
[80]
Anderson, J.C.; Campbell, I.B.; Campos, S.; Reid, I.H.; Rundell, C.D.; Shannon, J.; Tizzard, G.J. Reductive conjugate addition nitro-Mannich route for the stereoselective synthesis of 1,2,3,4-tetrahydroquinoxalines. Org. Biomol. Chem., 2016, 14(35), 8270-8277.
[http://dx.doi.org/10.1039/C6OB01530A] [PMID: 27527672]
[81]
Shi, F.; Tan, W.; Zhang, H.H.; Li, M.; Ye, Q.; Ma, G.H.; Tu, S.J.; Li, G. Asymmetric organocatalytic tandem cyclization/transfer hydrogenation: A synthetic strategy for enantioenriched nitrogen heterocycles. Adv. Synth. Catal., 2013, 355(18), 3715-3726.
[http://dx.doi.org/10.1002/adsc.201300576]
[82]
Deshmukh, M.S.; Das, B.; Jain, N. Dual SNAr reaction in activated ortho-halonitrobenzene: Direct synthesis of substituted 1,2,3,4-tetrahydro-quinoxalines, 2,3-dihydro-1,4-benzoxazines, and 1,4-benzodioxines. RSC Advances, 2013, 3(44), 22389.
[http://dx.doi.org/10.1039/c3ra44386h]
[83]
Kidwai, M.; Jain, A.; Sharma, A.; Kuhad, R.C. First time reported enzymatic synthesis of new series of quinoxalines-A green approach. J. Mol. Catal., B Enzym., 2012, 74(3-4), 236-240.
[http://dx.doi.org/10.1016/j.molcatb.2011.11.002]
[84]
Yang, P.; Zhang, C.; Gao, W.C.; Ma, Y.; Wang, X.; Zhang, L.; Yue, J.; Tang, B. Nickel-catalyzed borrowing hydrogen annulations: Access to diversified N-heterocycles. Chem. Commun., 2019, 55(54), 7844-7847.
[http://dx.doi.org/10.1039/C9CC03975A] [PMID: 31215577]
[85]
Yang, Z.; Bao, Y.; Huang, J.; Han, Z.; Sun, J.; Huang, H. Tandem allylic amination/oxa-michael addition of vinyl methylene cyclic carbonates via palladium-organo relay catalysis. Org. Lett., 2023, 25(30), 5624-5629.
[http://dx.doi.org/10.1021/acs.orglett.3c02014] [PMID: 37486245]
[86]
Luo, Z.; Li, Z.; Zhao, H.; Yang, J.; Xu, L.; Lei, M.; Fan, Q.; Walsh, P.J. Borane‐catalyzed tandem cyclization/hydrosilylation towards enantio‐ and diastereoselective construction of trans‐2,3‐disubstituted‐1,2,3,4‐tetrahydro-quinoxalines. Angew. Chem. Int. Ed., 2023, 62(32), e202305449.
[http://dx.doi.org/10.1002/anie.202305449] [PMID: 37338222]
[87]
Liu, C.; Liu, X.; Liu, Q. Stereodivergent asymmetric hydrogenation of quinoxalines. Chem, 2023, 9(9), 2585-2600.
[http://dx.doi.org/10.1016/j.chempr.2023.05.006]
[88]
Singh, B.; Goyal, V.; Sarma, D.; Kumar, R.; Bhatt, T.; Mahata, A.; Raji Reddy, C.; Narani, A.; Natte, K. Earth-abundant heterogeneous cobalt catalyst for selective ring hydrogenation of (Hetero)arenes and gram-scale synthesis of pharmaceutical intermediates. ACS Catal., 2023, 13(14), 9724-9744.
[http://dx.doi.org/10.1021/acscatal.3c02084]
[89]
Jhang, Y.J.; Zhelavskyi, O.; Nagorny, P. Enantioselective parallel kinetic resolution of aziridine-containing quinoxalines via chiral phosphoric acid-catalyzed transfer hydrogenation. Org. Lett., 2023, 25(42), 7721-7726.
[http://dx.doi.org/10.1021/acs.orglett.3c03072] [PMID: 37853540]
[90]
Luo, Z.; Yang, J.; Yao, Z.; Yang, J.; Xu, L.; Shi, Q. B(C6F5)3‐catalyzed one‐pot tandem diastereoselective synthesis of cis‐2,3‐disubstituted 1,2,3,4‐tetrahydroquinoxalines and cis‐2,4‐disubstituted 2,3,4,5‐tetrahydro‐1H‐1,5‐benzodiazepines. Adv. Synth. Catal., 2023, 365(20), 3527-3534.
[http://dx.doi.org/10.1002/adsc.202300817]
[91]
Wang, H.; Pang, L.; Zhang, Y.; Huang, J.; Wang, J.; Quan, H.; Wang, T.; Wang, Z. Synthesis, characterization, molecular docking, and biological evaluation of novel ASK1 inhibitors. J. Mol. Struct., 2023, 1290, 135954.
[http://dx.doi.org/10.1016/j.molstruc.2023.135954]
[92]
Ma, Z.C.; Wei, L.W.; Huang, Y. Stereodivergent access to [6.7]-fused N-heterocycles bearing 1,3-nonadjacent stereogenic centers by pd-catalyzed [4 + 2] annulations. Org. Lett., 2023, 25(10), 1661-1666.
[http://dx.doi.org/10.1021/acs.orglett.3c00269] [PMID: 36862582]
[93]
Hamdouni, M.; Hrizi, C.; Ahmed, H.E.; Knorr, M.; Krupp, A.; Strohmann, C.; Chaabouni, S. Reaction of Bi(NO3)3 with quinoxaline in the presence of HI. Synthesis of 5,6,7,8-tetranitro-1,2,3,4-tetrahydroquinoxaline-2,3-diol by serendipity: Crystal structure, Hirshfeld and optical study of a novel energetic compound. J. Mol. Struct., 2023, 1274, 134590.
[http://dx.doi.org/10.1016/j.molstruc.2022.134590]
[94]
Xu, A.; Li, C.; Huang, J.; Pang, H.; Zhao, C.; Song, L.; You, H.; Zhang, X.; Chen, F.E. Highly enantioselective synthesis of both tetrahydroquinoxalines and dihydroquinoxalinones via Rh-thiourea catalyzed asymmetric hydrogenation. Chem. Sci., 2023, 14(34), 9024-9032.
[http://dx.doi.org/10.1039/D3SC00803G] [PMID: 37655018]
[95]
Sun, Y.; Qian, C.; Emge, T.J.; Li, Y.; Kopcha, W.P.; Wang, L.; Zhang, J. Synthesis of [60]-and [70]fullerene-fused tetrahydroquinoxaline derivatives by oxidative [4 + 2] cycloaddition with unusual reactivity and regioselectivity. Org. Lett., 2022, 24(35), 6417-6422.
[http://dx.doi.org/10.1021/acs.orglett.2c02494] [PMID: 36036909]
[96]
El-Tunsi, A.; Carter, N.; Yeo, S-H.; Priest, J.D.; Choi, A.; Kobras, C.M.; Ndlovu, S.; Proietti Silvestri, I.; Fenton, A.K.; Coldham, I. Kinetic resolution by lithiation: Highly enantioselective synthesis of substituted dihydrobenzoxazines and tetrahydroquinoxalines. Synthesis, 2021, 54, 355.
[97]
Xia, F.; Lu, Y.Q.; Sun, P.; Guo, Q.Y.; Shi, Q.L.; Zhang, J.Z.; Qiu, C. A formal [4 + 2] annulation of diamines and prop-2-ynyl sulfonium salts for the synthesis of tetrahydroquinoxalines. Org. Biomol. Chem., 2022, 20(43), 8415-8419.
[http://dx.doi.org/10.1039/D2OB01590K] [PMID: 36278798]
[98]
Guan, X.Y.; Tang, M.; Liu, Z.Q.; Hu, W. A highly diastereoselective [5+1] annulation to 2,2,3-trisubstituted tetrahydroquinoxalines via intramolecular Mannich-type trapping of ammonium ylides. Chem. Commun., 2019, 55(66), 9809-9812.
[http://dx.doi.org/10.1039/C9CC04890A] [PMID: 31360958]
[99]
Lima, R.N.; Porto, A.L.M. Facile synthesis of new quinoxalines from ethyl gallate by green chemistry protocol. Tetrahedron Lett., 2017, 58(9), 825-828.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.062]
[100]
Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science, 2019, 364(6439), eaav9713.
[http://dx.doi.org/10.1126/science.aav9713] [PMID: 31048464]
[101]
Abderrazak, Y.; Bhattacharyya, A.; Reiser, O. Visible‐light‐induced homolysis of earth‐abundant metal‐substrate complexes: A complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed., 2021, 60(39), 21100-21115.
[http://dx.doi.org/10.1002/anie.202100270] [PMID: 33599363]
[102]
Krolo, T.; Bhattacharyya, A.; Reiser, O. Accessing HIV-1 protease inhibitors through visible-light-mediated sequential photocatalytic decarboxylative radical conjugate addition-elimination–oxa-michael reactions. Org. Lett., 2021, 23(16), 6283-6287.
[http://dx.doi.org/10.1021/acs.orglett.1c01964] [PMID: 34347496]
[103]
Noh, J.; Cho, J.Y.; Park, M.; Park, B.Y. Visible-light-mediated TiO2-catalyzed aerobic dehydrogenation of N-heterocycles in batch and flow. J. Org. Chem., 2023, 88(15), 10682-10692.
[http://dx.doi.org/10.1021/acs.joc.3c00743] [PMID: 37440309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy