Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR technologies for genome, epigenome and transcriptome editing

Abstract

Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adaptation of CRISPR–Cas9 for genome editing.
Fig. 2: Programmable large insertions.
Fig. 3: Programmable large deletions.
Fig. 4: Transcription modulation with Cas9.
Fig. 5: Transcriptome editing in mammalian cells.

Similar content being viewed by others

References

  1. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Koonin, E. V., Gootenberg, J. S. & Abudayyeh, O. O. Discovery of diverse CRISPR-Cas systems and expansion of the genome engineering toolbox. Biochemistry 62, 3465–3487 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J. Y., Pausch, P. & Doudna, J. A. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat. Rev. Microbiol. 20, 641–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, F. Development of CRISPR-Cas systems for genome editing and beyond. Q. Rev. Biophys. 52, e6 (2019).

    Article  ADS  Google Scholar 

  6. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). First description of Cas9 reprogrammability biochemically.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  11. Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013). Together with ref. 17, this article provides the first demonstration of mammalian genome editing using RNA-programmable Cas9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013). Together with ref. 16, this article provides the first demonstration of mammalian genome editing using RNA-programmable Cas9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013). This article introduces CRISPRi for transcription repression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA USA 109, E2579–E2586 (2012).

    CAS  ADS  Google Scholar 

  21. Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Hussmann, J. A. et al. Mapping the genetic landscape of DNA double-strand break repair. Cell 184, 5653–5669.e25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Ann. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7, 1765–1771 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, J., Baldeyron, C., De Oliveira, I., Sala-Trepat, M. & Papadopoulo, D. The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acids Res. 29, 4783–4792 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, S. et al. Accurate in vitro end joining of a DNA double strand break with partially cohesive 3’-overhangs and 3’-phosphoglycolate termini: effect of Ku on repair fidelity. J. Biol. Chem. 276, 24323–24330 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Waters, C. A. et al. The fidelity of the ligation step determines how ends are resolved during nonhomologous end joining. Nat. Commun. 5, 4286 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Song, B., Yang, S., Hwang, G.-H., Yu, J. & Bae, S. Analysis of NHEJ-based DNA repair after CRISPR-mediated DNA cleavage. Int. J. Mol. Sci. 22, 6397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).

    Article  PubMed  Google Scholar 

  31. Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Rudin, N., Sugarman, E. & Haber, J. E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122, 519–534 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Plessis, A., Perrin, A., Haber, J. E. & Dujon, B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130, 451–460 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amoasii, L. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl. Med. 9, eaan8081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015). This article introduces SaCas9 and AAV-mediated Cas9 editing in mice.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Hu, Z. et al. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol. 18, e3000686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chatterjee, P., Jakimo, N. & Jacobson, J. M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4, eaau0766 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Hirano, H. et al. Structure and engineering of francisella novicida Cas9. Cell 164, 950–961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harrington, L. B. et al. A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8, 1424 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Chylinski, K., Makarova, K. S., Charpentier, E. & Koonin, E. V. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 42, 6091–6105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015). This article introduces RNA-programmable Cas12a for mammalian genome editing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016). This article introduces RNA-programmable RNA-targeting Cas13 systems.

    Article  PubMed  PubMed Central  Google Scholar 

  48. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR–C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang, F. & Doudna, J. A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Müller, M. et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol. Ther. 24, 636–644 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chatterjee, P. et al. A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11, 2474 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Karvelis, T. et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 16, 253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR–Cas9 orthologs. Nat. Commun. 11, 5512 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Hirano, S., Nishimasu, H., Ishitani, R. & Nureki, O. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61, 886–894 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015). This article reports engineered Cas9 molecules that recognize different PAMs.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  60. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018). This work describes phage-assisted continuous evolution for Cas9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Chatterjee, P. et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat. Biotechnol. 38, 1154–1158 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Legut, M. et al. High-throughput screens of PAM-flexible Cas9 variants for gene knockout and transcriptional modulation. Cell Rep. 30, 2859–2868.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, D., Luk, K., Wolfe, S. A. & Kim, J.-S. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88, 191–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koike-Yusa, H., Li, Y., Tan, E.-P., Velasco-Herrera, M. D. C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). This study introduces CBEs that use rat APOBEC1 fused to nCas9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017). Development of laboratory-evolved TadA deaminase to achieve A-to-G editing.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016). This study introduces base editors that use AID fused to nCas9.

    Article  PubMed  Google Scholar 

  71. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). First work to describe prime editing, using reverse transcription for Cas9-targeted genome editing.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019). First description of CASTs, together with ref. 73.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019). First description of CASTs, together with ref. 72.

    Article  CAS  PubMed  Google Scholar 

  74. Lampe, G. D. et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat. Biotechnol. 42, 87–98 (2023).

    Article  PubMed  Google Scholar 

  75. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013). This study demonstrates transcription repression by KREB fused to dCas9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10, 973–976 (2013). This study demonstrates transcription activation by VP64 fused to dCas9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021). This study demonstrates Cas9-mediated heritable epigenome editing with CRISPRoff.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stepper, P. et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703–1713 (2016).

    Article  PubMed Central  Google Scholar 

  85. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  87. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017). This report introduces Cas13-based RNA A-to-I editing.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Özcan, A. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7–11. Nature 597, 720–725 (2021).

    Article  PubMed  ADS  Google Scholar 

  90. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  92. Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. 38, 865–869 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–864 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856–860 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, L. et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Koblan, L. W. et al. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 39, 1414–1425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, L. et al. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01821-9 (2023).

  104. Tong, H. et al. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. 41, 1–5 (2023).

    Article  Google Scholar 

  105. Yang, C. et al. HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing. Nat. Commun. 14, 2430 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  106. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 27, 1289–1292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lau, A. Y., Wyatt, M. D., Glassner, B. J., Samson, L. D. & Ellenberger, T. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc. Natl Acad. Sci. USA 97, 13573–13578 (2000).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  110. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019). This article demonstrates that DNA base editors have transcriptome-wide RNA off-targets.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  115. Li, S., Liu, L., Sun, W., Zhou, X. & Zhou, H. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants. Genome Biol. 23, 51 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhang, X. et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat. Cell Biol. 22, 740–750 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schmidheini, L. et al. Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01427-x (2023).

  119. Huang, T. P. et al. High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nat. Biotechnol. 41, 96–107 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9–cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang, T. P. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tan, J., Zhang, F., Karcher, D. & Bock, R. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat. Commun. 10, 439 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. Tan, J., Zhang, F., Karcher, D. & Bock, R. Expanding the genome-targeting scope and the site selectivity of high-precision base editors. Nat. Commun. 11, 629 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. Wang, Y., Zhou, L., Liu, N. & Yao, S. BE-PIGS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope. Signal Transduct. Target. Ther. 4, 36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jiang, W. et al. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Res. 28, 855–861 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  129. Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Kim, D. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Liang, P. et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Kim, D., Kim, D.-E., Lee, G., Cho, S.-I. & Kim, J.-S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  135. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  136. Gehrke, J. M. et al. An APOBEC3A–Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977–982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, Z. et al. Precise base editing with CC context-specificity using engineered human APOBEC3G–nCas9 fusions. BMC Biol. 18, 111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, Z. et al. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion. FASEB J. 33, 9210–9219 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, L. D. et al. Intrinsic nucleotide preference of diversifying base editors guides antibody ex vivo affinity maturation. Cell Rep. 25, 884–892.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  141. Lee, S. et al. Single C-to-T substitution using engineered APOBEC3G–nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Sci. Adv. 6, eaba1773 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  142. Liu, Z. et al. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death Dis. 11, 36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lam, D. K. et al. Improved cytosine base editors generated from TadA variants. Nat. Biotechnol. 41, 686–697 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2022). This article presents a mitochondrial, CRISPR-free, base editor.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  146. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021). Together with ref. 148, this work shows the applicability of ABEs in non-human primates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021). Together with ref. 147, this work shows the applicability of ABEs in non-human primates.

    Article  CAS  PubMed  ADS  Google Scholar 

  149. Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kweon, J. et al. Engineered prime editors with PAM flexibility. Mol. Ther. 29, 2001–2007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Böck, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhang, G. et al. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat. Commun. 13, 1856 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  156. Li, X. et al. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. J. Mol. Cell Biol. 14, mjac022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Liu, Y. et al. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res. 31, 1134–1136 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  158. Li, X. et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 13, 1669 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  159. Liu, B. et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 40, 1388–1393 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Bhagwat, A. M. et al. MultiCRISPR: gRNA design for prime editing and parallel targeting of thousands of targets. Life Sci. Alliance 3, e202000757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Chow, R. D., Chen, J. S., Shen, J. & Chen, S. A web tool for the design of prime-editing guide RNAs. Nat. Biomed. Eng. 5, 190–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Hwang, G.-H. et al. PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Res. 49, W499–W504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, Y., Chen, J., Tsai, S. Q. & Cheng, Y. Easy-prime: a machine learning-based prime editor design tool. Genome Biol. 22, 235 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Standage-Beier, K., Tekel, S. J., Brafman, D. A. & Wang, X. Prime editing guide RNA design automation using PINE-CONE. ACS Synth. Biol. 10, 422–427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Siegner, S. M., Karasu, M. E., Schröder, M. S., Kontarakis, Z. & Corn, J. E. PnB designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics 22, 101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hsu, J. Y. et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat. Commun. 12, 1034 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  167. Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198–206 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Yu, G. et al. Prediction of efficiencies for diverse prime editing systems in multiple cell types. Cell 186, 2256–2272.e23 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 41, 1151–1159 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Song, M. et al. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat. Commun. 12, 5617 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  171. Park, S.-J. et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 22, 170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Velimirovic, M. et al. Peptide fusion improves prime editing efficiency. Nat. Commun. 13, 3512 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  173. Zong, Y. et al. An engineered prime editor with enhanced editing efficiency in plants. Nat. Biotechnol. 40, 1394–1402 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Xu, W. et al. A design optimized prime editor with expanded scope and capability in plants. Nat. Plants 8, 45–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Zheng, C. et al. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol. Ther. 30, 1343–1351 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  176. Gao, Z. et al. A truncated reverse transcriptase enhances prime editing by split AAV vectors. Mol. Ther. 30, 2942–2951 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  177. Davis, J. R. et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01758-z (2023).

    Article  PubMed  Google Scholar 

  178. Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 186, 3983–4002.e26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ferreira da Silva, J. et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun. 13, 760 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  180. Roberts, J. D., Bebenek, K. & Kunkel, T. A. The accuracy of reverse transcriptase from HIV-1. Science 242, 1171–1173 (1988).

    Article  CAS  PubMed  ADS  Google Scholar 

  181. Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S. & Venkataraman, G. CRISPR for crop improvement: an update review. Front. Plant Sci. 9, 985 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Horwitz, A. A. et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 1, 88–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Article  PubMed  Google Scholar 

  184. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Chaikind, B., Bessen, J. L., Thompson, D. B., Hu, J. H. & Liu, D. R. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. 44, 9758–9770 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Pallarès-Masmitjà, M. et al. Find and cut-and-transfer (FiCAT) mammalian genome engineering. Nat. Commun. 12, 7071 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  187. Rezazade Bazaz, M., Ghahramani Seno, M. M. & Dehghani, H. Transposase-CRISPR mediated targeted integration (TransCRISTI) in the human genome. Sci. Rep. 12, 3390 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  188. Kovač, A. et al. RNA-guided retargeting of S transposition in human cells. eLife 9, e53868 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wang, C. et al. dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nat. Cell Biol. 24, 268–278 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  190. Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  191. Faure, G. et al. CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nat. Rev. Microbiol. 17, 513–525 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. George, J. T. et al. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 382, eadj8543 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tou, C. J., Orr, B. & Kleinstiver, B. P. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat. Biotechnol. 41, 968–979 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Park, J.-U. et al. Structures of the holo CRISPR RNA-guided transposon integration complex. Nature 613, 775–782 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  197. Schmitz, M., Querques, I., Oberli, S., Chanez, C. & Jinek, M. Structural basis for the assembly of the type V CRISPR-associated transposon complex. Cell 185, 4999–5010.e17 (2022). This article identifies ribosomal S15 as an additional bona fide component of type V CAST complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Querques, I., Schmitz, M., Oberli, S., Chanez, C. & Jinek, M. Target site selection and remodelling by type V CRISPR–transposon systems. Nature 599, 497–502 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  199. Halpin-Healy, T. S., Klompe, S. E., Sternberg, S. H. & Fernández, I. S. Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system. Nature 577, 271–274 (2019).

    Article  PubMed  ADS  Google Scholar 

  200. Park, J.-U. et al. Structural basis for target site selection in RNA-guided DNA transposition systems. Science 373, 768–774 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  201. Park, J.-U., Tsai, A. W.-L., Chen, T. H., Peters, J. E. & Kellogg, E. H. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. Proc. Natl Acad. Sci. USA 119, e2202590119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Jiang, T., Zhang, X. O., Weng, Z. & Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40, 227–234 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218–226 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Tao, R. et al. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Res. 50, 6423–6434 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331–340 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Sun, C. et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01769-w (2023).

  207. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Adikusuma, F. et al. Large deletions induced by Cas9 cleavage. Nature 560, E8–E9 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Zhuang, Y. et al. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat. Chem. Biol. 18, 29–37 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Tao, R. et al. WT-PE: prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct. Target. Ther. 7, 108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Adikusuma, F. et al. Optimized nickase- and nuclease-based prime editing in human and mouse cells. Nucleic Acids Res. 49, 10785–10795 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fujiwara, H. Site-specific non-LTR retrotransposons. Microbiol. Spectr. 3, MDNA3-0001-2014 (2015).

    Article  PubMed  Google Scholar 

  213. Eickbush, T. H. & Eickbush, D. G. Integration, regulation, and long-term stability of R2 retrotransposons. Microbiol. Spectr. 3, MDNA3-0011-2014 (2015).

    Article  PubMed  Google Scholar 

  214. Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    Article  CAS  PubMed  Google Scholar 

  215. Yang, J., Malik, H. S. & Eickbush, T. H. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl Acad. Sci. USA 96, 7847–7852 (1999).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  216. Wilkinson, M. E., Frangieh, C. J., Macrae, R. K. & Zhang, F. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science 380, 301–308 (2023). This study resolves the R2 retrotransposon structure.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  217. Deng, P. et al. Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon. Cell 186, 2865–2879.e20 (2023).

    Article  CAS  PubMed  Google Scholar 

  218. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dominguez, A. A. et al. CRISPR-mediated synergistic epigenetic and transcriptional control. CRISPR J. 5, 264–275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Tycko, J. et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Preprint at bioRxiv https://doi.org/10.1101/2023.05.12.540558 (2023).

  223. Alerasool, N., Leng, H., Lin, Z.-Y., Gingras, A.-C. & Taipale, M. Identification and functional characterization of transcriptional activators in human cells. Mol. Cell 82, 677–695.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Arnold, C. D. et al. A high-throughput method to identify trans-activation domains within transcription factor sequences. EMBO J. 37, e98896 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  225. DelRosso, N. et al. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 616, 365–372 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  226. Sanborn, A. L. et al. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to mediator. eLife 10, e68068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tycko, J. et al. High-throughput discovery and characterization of human transcriptional effectors. Cell 183, 2020–2035.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Alerasool, N., Segal, D., Lee, H. & Taipale, M. An efficient KRAB domain for CRISPRi applications in human cells. Nat. Methods 17, 1093–1096 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Carleton, J. B., Berrett, K. C. & Gertz, J. Multiplex enhancer interference reveals collaborative control of gene regulation by estrogen receptor α-bound enhancers. Cell Syst. 5, 333–344.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Replogle, J. M. et al. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. eLife 11, e81856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tarjan, D. R., Flavahan, W. A. & Bernstein, B. E. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun. 10, 4258 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  234. Galonska, C. et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9, 597 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  235. Hofacker, D. et al. Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int. J. Mol. Sci. 21, 502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Li, J. et al. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat. Commun. 12, 896 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  237. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Tong, H. et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 41, 108–119 (2022).

    Article  PubMed  Google Scholar 

  240. Wang, Q. et al. The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv. Sci. 6, 1901299 (2019).

    Article  CAS  Google Scholar 

  241. Ai, Y., Liang, D. & Wilusz, J. E. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. 50, e65 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kelley, C. P., Haerle, M. C. & Wang, E. T. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells. Cell Rep. 40, 111226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Powell, J. E. et al. Targeted gene silencing in the nervous system with CRISPR-Cas13. Sci. Adv. 8, eabk2485 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  244. Li, Y. et al. The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model. Genome Biol. 24, 20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Shi, P. et al. Collateral activity of the CRISPR/RfxCas13d system in human cells. Commun. Biol. 6, 334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Xu, C. et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods 18, 499–506 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Wessels, H.-H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Méndez-Mancilla, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells. Cell Chem. Biol. 29, 321–327.e4 (2022).

    Article  PubMed  Google Scholar 

  249. Guo, X. et al. Transcriptome-wide Cas13 guide RNA design for model organisms and viral RNA pathogens. Cell Genom. 1, 100001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Bartolomé, R. A. et al. IL13 receptor α2 signaling requires a scaffold protein, FAM120A, to activate the FAK and PI3K pathways in colon cancer metastasis. Cancer Res. 75, 2434–2444 (2015).

    Article  PubMed  Google Scholar 

  251. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Kato, K. et al. Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 185, 2324–2337.e16 (2022). Together with refs. 254 and 255, this study identifies RNA-guided peptidases.

    Article  CAS  PubMed  Google Scholar 

  253. Strecker, J. et al. RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Science 378, 874–881 (2022). Together with refs. 253 and 255, this study identified RNA-guided peptidases.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  254. Hu, C. et al. Craspase is a CRISPR RNA-guided, RNA-activated protease. Science 377, 1278–1285 (2022). Together with refs. 253 and 254, this study identified RNA-guided peptidases.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  255. Kato, K. et al. RNA-triggered protein cleavage and cell growth arrest by the type III-E CRISPR nuclease-protease. Science 378, 882–889 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  256. Rouillon, C. et al. Antiviral signalling by a cyclic nucleotide activated CRISPR protease. Nature 614, 168–174 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  257. Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. 41, 698–707 (2022).

    Article  PubMed  Google Scholar 

  258. Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2022).

    Article  PubMed  Google Scholar 

  259. Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  260. Fricke, T. et al. Targeted RNA knockdown by a type III CRISPR-Cas complex in zebrafish. CRISPR J. 3, 299–313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Woodside, W. T. et al. Type III-A CRISPR systems as a versatile gene knockdown technology. RNA 28, 1074–1088 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Colognori, D., Trinidad, M. & Doudna, J. A. Precise transcript targeting by CRISPR-Csm complexes. Nat. Biotechnol. 41, 1256–1264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019). This article reports a laboratory-evolved C-to-U deaminase fused to dCas13.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  264. Kapoor, U. et al. ADAR-deficiency perturbs the global splicing landscape in mouse tissues. Genome Res. 30, 1107–1118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  266. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Vandivier, L. E., Anderson, Z. D. & Gregory, B. D. HAMR: high-throughput annotation of modified ribonucleotides. Methods Mol. Biol. 1870, 51–67 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Stafforst, T. & Schneider, M. F. An RNA-deaminase conjugate selectively repairs point mutations. Angew. Chem. Int. Ed. Engl. 51, 11166–11169 (2012).

    Article  CAS  PubMed  Google Scholar 

  270. Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Montiel-González, M. F., Vallecillo-Viejo, I. C. & Rosenthal, J. J. C. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157 (2016).

    PubMed  PubMed Central  Google Scholar 

  272. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  273. Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Fukuda, M. et al. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci. Rep. 7, 41478 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  275. Wettengel, J., Reautschnig, P., Geisler, S., Kahle, P. J. & Stafforst, T. Harnessing human ADAR2 for RNA repair – recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 45, 2797–2808 (2017).

    CAS  PubMed  Google Scholar 

  276. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1380 (2019).

    Article  CAS  PubMed  Google Scholar 

  277. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  278. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wang, X. et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv. Sci. 10, e2206813 (2023).

    Article  Google Scholar 

  280. Huang, X. et al. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J. 40, e108209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Collantes, J. C. et al. Development and characterization of a modular CRISPR and RNA aptamer mediated base editing system. CRISPR J. 4, 58–68 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Pecori, R., Di Giorgio, S., Paulo Lorenzo, J. & Nina Papavasiliou, F. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 23, 505–518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Helm, M. & Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18, 275–291 (2017).

    Article  CAS  PubMed  Google Scholar 

  284. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Xie, S. et al. Programmable RNA N1 -methyladenosine demethylation by a Cas13d-directed demethylase. Angew. Chem. Int. Ed. Engl. 60, 19592–19597 (2021).

    Article  CAS  PubMed  Google Scholar 

  287. Xia, Z. et al. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res. 49, 7361–7374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Chang, C., Ma, G., Cheung, E. & Hutchins, A. P. A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. J. Biol. Chem. 298, 102525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Li, J. et al. Targeted mRNA demethylation using an engineered dCas13b–ALKBH5 fusion protein. Nucleic Acids Res. 48, 5684–5694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Cheng, X. et al. Modeling CRISPR–Cas13d on-target and off-target effects using machine learning approaches. Nat. Commun. 14, 752 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  291. Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting. Cell Systems 14, 1087–1102.e13 (2023).

  292. Kushawah, G. et al. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev. Cell 54, 805–817.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  293. Blanchard, E. L. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 39, 717–726 (2021).

    Article  CAS  PubMed  Google Scholar 

  294. Abbott, T. R. et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 181, 865–876.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Cui, Z. et al. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nat. Chem. Biol. 18, 1056–1064 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Guo, Y. et al. Specific knockdown of Htra2 by CRISPR-CasRx prevents acquired sensorineural hearing loss in mice. Mol. Ther. Nucleic Acids 28, 643–655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Zhao, X. et al. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett. 431, 171–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  298. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article  CAS  PubMed  Google Scholar 

  299. Nakagawa, R. et al. Structure and engineering of the minimal type VI CRISPR-Cas13bt3. Mol. Cell 82, 3178–3192.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05398029 (2023).

  301. Xiao, Q. et al. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor. Sci. Transl. Med. 14, eabn0449 (2022).

    Article  CAS  PubMed  Google Scholar 

  302. Li, G. et al. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J. Clin. Invest. 133, e162809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  Google Scholar 

  304. Xu, L. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 381, 1240–1247 (2019).

    Article  CAS  PubMed  Google Scholar 

  305. Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  306. McGuirk, J. P. et al. CTX110 allogeneic CRISPR-Cas9-engineered CAR T cells in patients (Pts) with relapsed or refractory (R/R) large B-cell lymphoma (LBCL): results from the phase 1 dose escalation carbon study. Blood 140, 10303–10306 (2022).

    Article  Google Scholar 

  307. Uchida, N. et al. Fertility-preserving myeloablative conditioning using single-dose CD117 antibody–drug conjugate in a rhesus gene therapy model. Nat. Commun. 14, 6291 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  308. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  309. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05444894 (2023).

  310. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04774536 (2023).

  311. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05565248 (2023).

  312. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  313. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05120830 (2023).

  314. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03872479 (2022).

  315. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05477563 (2023).

  316. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05144386 (2023).

  317. Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).

    Article  CAS  PubMed  Google Scholar 

  318. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  319. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  320. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03399448 (2023).

  321. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03655678 (2023).

  322. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03745287 (2023).

  323. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04925206 (2023).

  324. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04035434 (2023).

  325. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05356195 (2023).

  326. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05329649 (2023).

  327. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04819841 (2023).

  328. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05066165 (2023).

  329. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04557436 (2023).

  330. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04849910 (2023).

  331. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05951205 (2023).

  332. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05662904 (2022).

  333. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05397184 (2023).

  334. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05643742 (2023).

  335. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04244656 (2023).

  336. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04502446 (2023).

  337. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04438083 (2023).

  338. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05795595 (2023).

  339. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04637763 (2024).

  340. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05722418 (2024).

  341. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04426669 (2023).

  342. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05566223 (2022).

  343. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04601051 (2023).

  344. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05514249 (2022).

  345. Kenjo, E. et al. Low immunogenicity of LNP allows repeated administrations of CRISPR–Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 12, 7101 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  346. Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  347. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Villiger, L. et al. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat. Biomed. Eng. 5, 179–189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  350. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017). Demonstration of efficient, lipid nanoparticle-mediated genome editing in the mouse liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022). Comprehensive review on in vivo delivery of genome editors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Davis, J. R. et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng. 6, 1272–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  355. Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  356. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  357. Arbab, M. et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 380, eadg6518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21, 75–80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  361. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  362. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265.e16 (2022). This article reports on engineering of virus-like particles for in vivo base editor delivery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Campbell, L. A. et al. Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Mol. Ther. 27, 151–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  364. Choi, J. G. et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 23, 627–633 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  365. Hamilton, J. R. et al. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35, 109207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Zhuo, C. et al. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct. Target. Ther. 6, 238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Jain, I. H. et al. Hypoxia as a therapy for mitochondrial disease. Science 352, 54–61 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  369. Marceau, C. D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  370. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  371. Sanjana, N. E. et al. High-resolution interrogation of functional elements in the noncoding genome. Science 353, 1545–1549 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  372. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, aah7111 (2017).

    Article  PubMed  Google Scholar 

  373. Joung, J. et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548, 343–346 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  374. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Xu, P. et al. Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nat. Biotechnol. 39, 1403–1413 (2021).

    Article  CAS  PubMed  Google Scholar 

  378. Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080.e20 (2021).

    Article  CAS  PubMed  Google Scholar 

  379. Cuella-Martin, R. et al. Functional interrogation of DNA damage response variants with base editing screens. Cell 184, 1081–1097.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Perner, F. et al. MEN1 mutations mediate clinical resistance to menin inhibition. Nature 615, 913–919 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  381. Morris, J. A. et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science 380, eadh7699 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474.e24 (2023).

    Article  CAS  PubMed  Google Scholar 

  383. Li, S. et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat. Methods 18, 51–59 (2020).

    Article  PubMed  Google Scholar 

  384. Freije, C. A. et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell 76, 826–837.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Wessels, H.-H. et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat. Methods 20, 86–94 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Doudna, F. Zhang and E. Koonin for critical reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. L.V. and J.J. jointly researched background, wrote, revised and discussed the article. O.O.A. and J.S.G. jointly supervised the work.

Corresponding authors

Correspondence to Omar O. Abudayyeh or Jonathan S. Gootenberg.

Ethics declarations

Competing interests

L.V., J.J., L.K., J.W, J.S.G. and O.O.A. are inventors on patent applications related to CRISPR technologies. O.O.A. and J.S.G. are co-founders of Sherlock Biosciences, Proof Diagnostics, Tome Biosciences and Doppler Bio. J.S.W. declares outside interest in 5 AM Venture, Amgen, Chroma Medicine, KSQ Therapeutics, Maze Therapeutics, Tenaya Therapeutics, Tessera Therapeutics and Third Rock Ventures.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Quanjiang Ji, Yongsub Kim and Hao Yin  for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

BoxB domains

An RNA–protein system from phage, whereby the BoxB RNA motif binds to the N protein.

Cas9 nickase

Cas9 with one of two cleavage domains inactivated, either D10A or H840A for SpCas9.

Codon optimization

Alteration of the DNA sequence (that is, codon composition) without altering the amino acid sequence with the aim to maximize protein expression to achieve higher editing efficiency.

Directed evolution

Mutations that optimize protein function are selected under evolutionary pressures that stems from experimental design.

DNA deaminases

Enzymes that catalyse the removal of amino groups from molecules; in DNA bases, this can lead to base changes.

Duchenne muscular dystrophy

X-linked and life-threatening muscular dystrophy due to mutations in the dystrophin gene.

Integrases

Enzymes that catalyse the integration of a nucleic acid sequence into a target genome.

MS2 hairpin

An RNA stem–loop from the MS2 bacteriophage that tightly binds to the MS2 coat protein.

Mucopolysaccharidosis type I-Hurler (MPS I-H) syndrome

A life-threatening genetic disorder that leads to a reduced ability to break down glycosaminoglycans, causing toxic accumulation in multiple tissues.

MuGam protein

Protein derived from the Mu bacteriophage that binds and protects DNA.

N-of-1 trials

Individualized clinical trials designed to determine the efficacy and safety of interventions in single patients.

Non-long terminal repeat retrotransposons

Mobile genetic elements that transpose in a copy-and-paste mechanism independently of long terminal repeats.

OTC deficiency

Ornithine transcarbamylase deficiency is a rare genetic (urea cycle) disorder that leads to build-up of toxic ammonia in the blood.

Purity

In the context of genome editing, purity refers to homogeneity of genetic modification outcomes.

Site-specific recombinases

Enzymes that catalyse precise excision, integration or inversion of DNA sequences at specific sites within the genome.

TALE nucleases

Engineered endonucleases that consist of a designed transcription activator-like effector (TALE) domain fused to the cleavage domain of a nuclease.

Transposases

Enzymes that can move discrete segments of DNA from one location in the genome to a new site without using RNA intermediates.

Transthyretin amyloidosis

The build-up of abnormal protein deposits (transthyretin) in vital organs, including the heart, peripheral nervous system, kidneys and eyes.

Zinc finger nucleases

Engineered endonucleases that consist of a designed zinc finger DNA-binding domain fused to the cleavage domain of a nuclease.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villiger, L., Joung, J., Koblan, L. et al. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-023-00697-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-023-00697-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research