Skip to main content
Log in

Surface enhancement of metallic alloys by laser precision engineering

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Surface enhancement is critical to improve overall performance, service functionality, and longevity of metallic components for complex service environments in diverse industrial fields. Laser precision engineering has advantages of high precision, high flexibility, high-energy density, and slight thermal damage, which shows excellent prospects for metallic surface. This study focuses on surface enhancement of various metallic alloys induced by laser precision processing in our group, which mainly includes multi-metal laser cladding, laser joining of dissimilar materials, and laser polishing of additively manufactured metallic alloys. Moreover, on-line monitoring technologies as well as machine learning methods have been applied to develop intelligent processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liao Z, la Monaca A, Murray J et al (2021) Surface integrity in metal machining - part I: fundamentals of surface characteristics and formation mechanisms. Int J Mach Tools Manuf 162:103687. https://doi.org/10.1016/j.ijmachtools.2020.103687

    Article  Google Scholar 

  2. Valkov S, Ormanova M, Petrov P (2020) Electron-beam surface treatment of metals and alloys: techniques and trends. Metals (Basel) 10:1–20. https://doi.org/10.3390/met10091219

    Article  CAS  Google Scholar 

  3. Huang X, Lang L, Xu W, Meng F (2018) Surface carburizing during hot isostatic pressing. Surf Eng 34:955–958. https://doi.org/10.1080/02670844.2018.1434959

    Article  CAS  Google Scholar 

  4. Zhao J, Liu Z, Wang B (2021) Surface texture and friction property of Ti-6Al-4V processed by rotary ultrasonic rolling. Int J Adv Manuf Technol 115:463–474. https://doi.org/10.1007/s00170-021-07197-x

    Article  Google Scholar 

  5. Ren XD, Ruan L, Yuan SQ et al (2013) Dislocation polymorphism transformation of 6061–T651 aluminum alloy processed by laser shock processing: effect of tempering at the elevated temperatures. Mater Sci Eng A 578:96–102. https://doi.org/10.1016/j.msea.2013.04.034

    Article  CAS  Google Scholar 

  6. Bansal P, Singh G, Sidhu HS (2021) Plasma-sprayed HA/Sr reinforced coating for improved corrosion resistance and surface properties of Ti13Nb13Zr titanium alloy for biomedical implants. J Mater Res 36:431–442. https://doi.org/10.1557/s43578-020-00044-x

    Article  ADS  CAS  Google Scholar 

  7. Zhecheva A, Sha W, Malinov S, Long A (2005) Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf Coatings Technol 200:2192–2207. https://doi.org/10.1016/j.surfcoat.2004.07.115

    Article  CAS  Google Scholar 

  8. Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2014) Improving the hot corrosion resistance of plasma sprayed ceria-yttria stabilized zirconia thermal barrier coatings by laser surface treatment. Mater Des 57:336–341. https://doi.org/10.1016/j.matdes.2013.12.075

    Article  CAS  Google Scholar 

  9. Chai L, Wu H, Zheng Z et al (2018) Microstructural characterization and hardness variation of pure Ti surface-treated by pulsed laser. J Alloys Compd 741:116–122. https://doi.org/10.1016/j.jallcom.2018.01.113

    Article  CAS  Google Scholar 

  10. Imad M, Hopkins C, Hosseini A et al (2022) Intelligent machining: a review of trends, achievements and current progress. Int J Comput Integr Manuf 35:359–387. https://doi.org/10.1080/0951192X.2021.1891573

    Article  Google Scholar 

  11. Aminzadeh A, Karganroudi SS, Meiabadi MS et al (2022) A survey of process monitoring using computer-aided inspection in laser-welded blanks of light metals based on the digital twins concept. Quantum Beam Sci 6:1–12. https://doi.org/10.3390/qubs6020019

    Article  Google Scholar 

  12. Siddiqui AA, Dubey AK (2021) Recent trends in laser cladding and surface alloying. Opt Laser Technol 134:106619. https://doi.org/10.1016/j.optlastec.2020.106619

    Article  CAS  Google Scholar 

  13. Wang H, Feng W, Zhang Z, et al. (2019) Hybrid laser technique for joining of polymer and titanium alloy. J Laser Appl 31:. https://doi.org/10.2351/1.5097631

  14. Mulko L, Soldera M, Lasagni AF (2022) Structuring and functionalization of non-metallic materials using direct laser interference patterning: a review. Nanophotonics 11:203–240. https://doi.org/10.1515/nanoph-2021-0591

    Article  CAS  Google Scholar 

  15. Bordatchev EV, Hafiz AMK, Tutunea-Fatan OR (2014) Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 73:35–52. https://doi.org/10.1007/s00170-014-5761-3

    Article  Google Scholar 

  16. Prabu G, Duraiselvam M, Jeyaprakash N, Yang CH (2021) Microstructural evolution and wear behavior of AlCoCrCuFeNi high entropy alloy on Ti–6Al–4V through laser surface alloying. Met Mater Int 27:2328–2340. https://doi.org/10.1007/s12540-020-00873-9

    Article  CAS  Google Scholar 

  17. Zhang Z, Qiu W, Zhang G et al (2023) Progress in applications of shockwave induced by short pulsed laser on surface processing. Opt Laser Technol 157:108760. https://doi.org/10.1016/j.optlastec.2022.108760

    Article  Google Scholar 

  18. Wei C, Zhang Z, Cheng D et al (2021) An overview of laser-based multiple metallic material additive manufacturing: from macro: from micro-scales. Int J Extrem Manuf 3:012003. https://doi.org/10.1088/2631-7990/abce04

    Article  CAS  Google Scholar 

  19. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  ADS  CAS  Google Scholar 

  20. Yang SW, Yoon J, Lee H, Shim DS (2022) Defect of functionally graded material of Inconel 718 and STS 316L fabricated by directed energy deposition and its effect on mechanical properties. J Mater Res Technol 17:478–497. https://doi.org/10.1016/j.jmrt.2022.01.029

    Article  CAS  Google Scholar 

  21. Chen J, Yang Y, Song C et al (2019) Interfacial microstructure and mechanical properties of 316L /CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater Sci Eng A 752:75–85. https://doi.org/10.1016/j.msea.2019.02.097

    Article  CAS  Google Scholar 

  22. Mei X, Wang X, Peng Y et al (2019) Interfacial characterization and mechanical properties of 316L stainless steel/Inconel 718 manufactured by selective laser melting. Mater Sci Eng A 758:185–191. https://doi.org/10.1016/j.msea.2019.05.011

    Article  CAS  Google Scholar 

  23. Ghanavati R, Naffakh-Moosavy H, Moradi M (2021) Additive manufacturing of thin-walled SS316L-IN718 functionally graded materials by direct laser metal deposition. J Mater Res Technol 15:2673–2685. https://doi.org/10.1016/j.jmrt.2021.09.061

    Article  CAS  Google Scholar 

  24. Tan C, Zhang X, Dong D et al (2020) In-situ synthesised interlayer enhances bonding strength in additively manufactured multi-material hybrid tooling. Int J Mach Tools Manuf 155:103592. https://doi.org/10.1016/j.ijmachtools.2020.103592

    Article  Google Scholar 

  25. Xing L, Quanjie W, Qirui Z et al (2023) Interface analyses and mechanical properties of stainless steel/nickel alloy induced by multi-metal laser additive manufacturing. J Manuf Process 91:53–60. https://doi.org/10.1016/j.jmapro.2023.02.038

    Article  Google Scholar 

  26. Yang J, Li X, Yao H, Guan Y (2022) Interfacial features of stainless steel/titanium alloy multi-metal fabricated by laser additive manufacturing. Acta Metall Sin (English Lett) 35:1357–1364. https://doi.org/10.1007/s40195-022-01384-9

    Article  CAS  Google Scholar 

  27. Su Y, Chen B, Tan C et al (2020) Influence of composition gradient variation on the microstructure and mechanical properties of 316 L/Inconel718 functionally graded material fabricated by laser additive manufacturing. J Mater Process Technol 283:116702. https://doi.org/10.1016/j.jmatprotec.2020.116702

    Article  CAS  Google Scholar 

  28. Li P, Gong Y, Xu Y et al (2019) Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: microstructure and mechanical properties. Arch Civ Mech Eng 19:820–831. https://doi.org/10.1016/j.acme.2019.03.002

    Article  Google Scholar 

  29. Singh SP, Aggarwal A, Upadhyay RK, Kumar A (2021) Processing of IN718-SS316L bimetallic-structure using laser powder bed fusion technique. Mater Manuf Process 36:1028–1039. https://doi.org/10.1080/10426914.2021.1885701

    Article  CAS  Google Scholar 

  30. Ghanavati R, Lannunziata E, Norouzi E et al (2023) Design and development of SS316L-IN718 functionally graded materials via laser powder bed fusion. Mater Lett 349:134793. https://doi.org/10.1016/j.matlet.2023.134793

    Article  CAS  Google Scholar 

  31. Shah K, ul-Haq I, Khan A et al (2014) Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition. Mater Des 54:531–538. https://doi.org/10.1016/j.matdes.2013.08.079

    Article  CAS  Google Scholar 

  32. Ouyang Y, Chen C (2023) Research on the mechanical clinching process for the metal–polymer multilayer structure. Mater Sci Technol (United Kingdom) 39:543–556. https://doi.org/10.1080/02670836.2022.2126103

    Article  ADS  CAS  Google Scholar 

  33. Lambiase F, Ko DC (2016) Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets. Mater Des 107:341–352. https://doi.org/10.1016/j.matdes.2016.06.061

    Article  CAS  Google Scholar 

  34. Pang V, Thompson ZJ, Joly GD et al (2020) Adhesion strength of block copolymer toughened epoxy on aluminum. ACS Appl Polym Mater 2:464–474. https://doi.org/10.1021/acsapm.9b00909

    Article  CAS  Google Scholar 

  35. Katayama S, Kawahito Y (2008) Laser direct joining of metal and plastic. Scr Mater 59:1247–1250. https://doi.org/10.1016/j.scriptamat.2008.08.026

    Article  CAS  Google Scholar 

  36. Wu LH, Xiao BL, Nagatsuka K et al (2020) Achieving strong friction lap joints of carbon-fiber reinforced plastic and metals by modifying metal surface structure via laser-processing pretreatment. Compos Struct 242:112167. https://doi.org/10.1016/j.compstruct.2020.112167

    Article  Google Scholar 

  37. Huang Y, Gao X, Zhang Y, Ma B (2022) Laser joining technology of polymer-metal hybrid structures - a review. J Manuf Process 79:934–961. https://doi.org/10.1016/j.jmapro.2022.05.026

    Article  Google Scholar 

  38. Zhang D, Zhang Q, Fan X, Zhao S (2018) Review on joining process of carbon fiber-reinforced polymer and metal: methods and joining process. Rare Met Mater Eng 47:3686–3696. https://doi.org/10.1016/s1875-5372(19)30018-9

    Article  Google Scholar 

  39. Zhang Z, Shan JG, Tan XH, Zhang J (2016) Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061. Int J Adhes Adhes 70:142–151. https://doi.org/10.1016/j.ijadhadh.2016.06.007

    Article  CAS  Google Scholar 

  40. Tan B, Hu Y, Yuan B et al (2021) Optimizing adhesive bonding between CFRP and Al alloy substrate through resin pre-coating by filling micro-cavities from sandblasting. Int J Adhes Adhes 110:102952. https://doi.org/10.1016/j.ijadhadh.2021.102952

    Article  CAS  Google Scholar 

  41. Tan X, Zhang J, Shan J et al (2015) Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel. Compos Part B Eng 70:35–43. https://doi.org/10.1016/j.compositesb.2014.10.023

    Article  CAS  Google Scholar 

  42. Jiao J, Jia S, Xu Z et al (2019) Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method. Compos Part B Eng 173:106911. https://doi.org/10.1016/j.compositesb.2019.106911

    Article  CAS  Google Scholar 

  43. Chen YJ, Yue TM, Guo ZN (2016) A new laser joining technology for direct-bonding of metals and plastics. Mater Des 110:775–781. https://doi.org/10.1016/j.matdes.2016.08.018

    Article  CAS  Google Scholar 

  44. Chen YJ, Yue TM, Guo ZN (2017) Laser joining of metals to plastics with ultrasonic vibration. J Mater Process Technol 249:441–451. https://doi.org/10.1016/j.jmatprotec.2017.06.036

    Article  CAS  Google Scholar 

  45. Wang H, Chen Y, Guo Z, Guan Y (2019) Porosity elimination in modified direct laser joining of Ti6Al4V and thermoplastics composites. Appl Sci 9:411. https://doi.org/10.3390/app9030411

    Article  ADS  CAS  Google Scholar 

  46. Wang H, Yan P, Ding X, Guan Y (2023) Enhanced laser direct joining of continuous carbon fiber reinforced polyetheretherketone and titanium alloy with controllable mechanical interlocks. J Manuf Process 86:56–65. https://doi.org/10.1016/j.jmapro.2022.12.051

    Article  Google Scholar 

  47. Wang H, Ren Z, Guan Y (2022) Laser joining of continuous carbon fiber-reinforced PEEK and titanium alloy with high strength. Polymers (Basel) 14:4676. https://doi.org/10.3390/polym14214676

    Article  CAS  PubMed  Google Scholar 

  48. Wang H, Yan P, Guan Y (2021) Robust heterojunctions of metallic alloy and carbon fiber-reinforced composite induced by laser processing. Materials (Basel) 14:2–11. https://doi.org/10.3390/ma14237469

    Article  CAS  Google Scholar 

  49. Su J, Tan C, Wang X et al (2023) Enhanced the bonding reliability of titanium alloy and CFRTP via interfacial multiple modification: Synergy of physical interlocking and chemical interaction. Compos Struct 310:116778. https://doi.org/10.1016/j.compstruct.2023.116778

    Article  CAS  Google Scholar 

  50. Xia H, Ma Y, Chen C et al (2022) Influence of laser welding power on steel/CFRP lap joint fracture behaviors. Compos Struct 285:115247. https://doi.org/10.1016/j.compstruct.2022.115247

    Article  CAS  Google Scholar 

  51. Wang Q, Jia ZY, Zhang BY et al (2022) Study on interface temperature control of laser direct joining of CFRTP and aluminum alloy based on staged laser path planning. Opt Laser Technol 154:108333. https://doi.org/10.1016/j.optlastec.2022.108333

    Article  CAS  Google Scholar 

  52. Wang F, Zhang P, Bu H et al (2022) Effect of clamping pressure on interfacial fusion morphology and fracture mechanism of CFRTP/Ti6Al4V laser bonding joint featuring blind hole surface microtextures. Opt Laser Technol 153:108192. https://doi.org/10.1016/j.optlastec.2022.108192

    Article  CAS  Google Scholar 

  53. Bu H, Li X, Li B et al (2023) Enhanced interfacial joining strength of laser wobble joined 6061–T6 Al alloy/CFRTP joint via interfacial bionic textures pre-construction. Compos Part B Eng 261:110787. https://doi.org/10.1016/j.compositesb.2023.110787

    Article  CAS  Google Scholar 

  54. Guo Q, Zhao C, Escano LI et al (2018) Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging. Acta Mater 151:169–180. https://doi.org/10.1016/j.actamat.2018.03.036

    Article  ADS  CAS  Google Scholar 

  55. Bhaduri D, Penchev P, Batal A et al (2017) Laser polishing of 3D printed mesoscale components. Appl Surf Sci 405:29–46. https://doi.org/10.1016/j.apsusc.2017.01.211

    Article  ADS  CAS  Google Scholar 

  56. Ukar E, Lamikiz A, López de Lacalle LN et al (2010) Laser polishing of tool steel with CO2 laser and high-power diode laser. Int J Mach Tools Manuf 50:115–125. https://doi.org/10.1016/j.ijmachtools.2009.09.003

    Article  Google Scholar 

  57. Krishnan A, Fang F (2019) Review on mechanism and process of surface polishing using lasers. Front Mech Eng 14:299–319. https://doi.org/10.1007/s11465-019-0535-0

    Article  Google Scholar 

  58. Li T, Sun H, Wang D et al (2021) High-performance chemical mechanical polishing slurry for aluminum alloy using hybrid abrasives of zirconium phosphate and alumina. Appl Surf Sci 537:147859. https://doi.org/10.1016/j.apsusc.2020.147859

    Article  CAS  Google Scholar 

  59. Fu J, Li H, Song X, Fu MW (2022) Multi-scale defects in powder-based additively manufactured metals and alloys. J Mater Sci Technol 122:165–199. https://doi.org/10.1016/j.jmst.2022.02.015

    Article  CAS  Google Scholar 

  60. Hashmi AW, Mali HS, Meena A (2023) A comprehensive review on surface quality improvement methods for additively manufactured parts. Rapid Prototyp J 29:504–557

    Article  Google Scholar 

  61. Bezuidenhout M, Ter Haar G, Becker T et al (2020) The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti6Al4V. Mater Today Commun 25:101396. https://doi.org/10.1016/j.mtcomm.2020.101396

    Article  CAS  Google Scholar 

  62. Mu J, Sun T, Leung CLA, et al. (2023) Application of electrochemical polishing in surface treatment of additively manufactured structures: a review. Prog Mater Sci 136:. https://doi.org/10.1016/j.pmatsci.2023.101109

  63. Stepputat VN, Zeidler H, Safranchik D et al (2021) Investigation of post-processing of additively manufactured nitinol smart springs with plasma-electrolytic polishing. Materials (Basel) 14:1–14. https://doi.org/10.3390/ma14154093

    Article  CAS  Google Scholar 

  64. Kumstel J, Kirsch B (2013) Polishing titanium- and nickel-based alloys using CW-laser radiation. Phys Procedia 41:362–371. https://doi.org/10.1016/j.phpro.2013.03.089

    Article  ADS  CAS  Google Scholar 

  65. Marimuthu S, Triantaphyllou A, Antar M et al (2015) Laser polishing of selective laser melted components. Int J Mach Tools Manuf 95:97–104. https://doi.org/10.1016/j.ijmachtools.2015.05.002

    Article  Google Scholar 

  66. Xiao H, Zhou Y, Liu M, Xu X (2020) Laser polishing of tool steel using a continuous-wave laser assisted by a steady magnetic field. AIP Adv 10:. https://doi.org/10.1063/1.5116686

  67. Kang D, Zou P, Wu H et al (2021) Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel. J Manuf Process 62:403–417. https://doi.org/10.1016/j.jmapro.2020.12.009

    Article  Google Scholar 

  68. Cui M, Yang W, Guan Y, Zhang Z (2022) Fabrication of high precision grating patterns with a compliant nanomanipulator-based femtosecond laser direct writing system. Precis Eng 78:60–69. https://doi.org/10.1016/j.precisioneng.2022.07.007

    Article  Google Scholar 

  69. Li Y, Cheng X, Guan Y (2021) Ultrafine microstructure development in laser polishing of selective laser melted Ti alloy. J Mater Sci Technol 83:1–6. https://doi.org/10.1016/j.jmst.2020.12.056

    Article  Google Scholar 

  70. Li YH, Wang B, Ma CP et al (2019) Material characterization, thermal analysis, and mechanical performance of a laser-polished Ti Alloy prepared by selective laser melting. Metals (Basel) 9:1–11. https://doi.org/10.3390/met9020112

    Article  CAS  Google Scholar 

  71. Li Y, Zhang Z, Guan Y (2020) Thermodynamics analysis and rapid solidification of laser polished Inconel 718 by selective laser melting. Appl Surf Sci 511:145423. https://doi.org/10.1016/j.apsusc.2020.145423

    Article  CAS  Google Scholar 

  72. Wang Y, Li Y, Guan Y (2023) Surface modification and mechanical properties of laser powder bed fusion Inconel 718 after magnetic-assisted laser polishing. Opt Laser Technol 162:109291. https://doi.org/10.1016/j.optlastec.2023.109291

    Article  CAS  Google Scholar 

  73. Cui M, Lu L, Zhang Z, Guan Y (2021) A laser scanner–stage synchronized system supporting the large-area precision polishing of additive-manufactured metallic surfaces. Engineering 7:1732–1740. https://doi.org/10.1016/j.eng.2020.06.028

    Article  CAS  Google Scholar 

  74. Yi JH, Kang JW, Wang TJ et al (2019) Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting. J Alloys Compd 786:481–488. https://doi.org/10.1016/j.jallcom.2019.01.377

    Article  CAS  Google Scholar 

  75. Yu Z, Zheng Y, Chen J et al (2020) Effect of laser remelting processing on microstructure and mechanical properties of 17–4 PH stainless steel during laser direct metal deposition. J Mater Process Technol 284:116738. https://doi.org/10.1016/j.jmatprotec.2020.116738

    Article  CAS  Google Scholar 

  76. Liang C, Yazhou Hu NL, Zou X et al (2020) Laser polishing of Ti6Al4V fabricated by selective laser melting. Metals (Basel) 10:191

    Article  CAS  Google Scholar 

  77. Kahlin M, Ansell H, Basu D et al (2020) Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int J Fatigue 134:105497. https://doi.org/10.1016/j.ijfatigue.2020.105497

    Article  CAS  Google Scholar 

  78. Luo S, He W, Chen K et al (2018) Regain the fatigue strength of laser additive manufactured Ti alloy via laser shock peening. J Alloys Compd 750:626–635. https://doi.org/10.1016/j.jallcom.2018.04.029

    Article  CAS  Google Scholar 

  79. Kalsoom T, Ramzan N, Ahmed S, Ur-Rehman M (2020) Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors (Switzerland) 20:1–22. https://doi.org/10.3390/s20236783

    Article  CAS  Google Scholar 

  80. Zhong RY, Xu X, Klotz E, Newman ST (2017) Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 3:616–630. https://doi.org/10.1016/J.ENG.2017.05.015

    Article  Google Scholar 

  81. Ding Y, Xue Y, Pang JH et al (2019) Advances in in-situ monitoring technology for laser processing. Sci Sin Phys Mech Astron 49:044201. https://doi.org/10.1360/SSPMA2018-00311

    Article  Google Scholar 

  82. Tserevelakis GJ, Pozo-Antonio JS, Siozos P et al (2019) On-line photoacoustic monitoring of laser cleaning on stone: evaluation of cleaning effectiveness and detection of potential damage to the substrate. J Cult Herit 35:108–115. https://doi.org/10.1016/j.culher.2018.05.014

    Article  Google Scholar 

  83. Grasso M, Demir AG, Previtali B, Colosimo BM (2018) In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robot Comput Integr Manuf 49:229–239. https://doi.org/10.1016/j.rcim.2017.07.001

    Article  Google Scholar 

  84. Nilsen M, Sikström F, Christiansson AK, Ancona A (2018) In-process monitoring and control of robotized laser beam welding of closed square butt joints. Procedia Manuf 25:511–516. https://doi.org/10.1016/j.promfg.2018.06.123

    Article  Google Scholar 

  85. Stafe M, Negutu C (2012) Real-time monitoring of the pulsed laser ablation of metals using ablation plasma spectroscopy. Plasma Chem Plasma Process 32:643–653. https://doi.org/10.1007/s11090-012-9359-y

    Article  CAS  Google Scholar 

  86. Wu C, Ko J, Davis CC (2020) Lossy wavefront sensing and correction of distorted laser beams. Appl Opt 59:817. https://doi.org/10.1364/ao.59.000817

    Article  ADS  PubMed  Google Scholar 

  87. Li X, Wang H, Wang B, Guan Y (2022) Machine learning methods for prediction analyses of 4H–SiC microfabrication via femtosecond laser processing. J Mater Res Technol 18:2152–2165. https://doi.org/10.1016/j.jmrt.2022.03.124

    Article  CAS  Google Scholar 

  88. Li X, Guan Y (2021) Real-time monitoring of laser cleaning for hot-rolled stainless steel by laser-induced breakdown spectroscopy. Metals (Basel) 11:790. https://doi.org/10.3390/met11050790

    Article  CAS  Google Scholar 

  89. Verhoff B, Harilal SS, Freeman JR, et al. (2012) Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy. J Appl Phys 112:. https://doi.org/10.1063/1.4764060

  90. Roozbahani H, Salminen A, Manninen M (2017) Real-time online monitoring of nanosecond pulsed laser scribing process utilizing spectrometer. J Laser Appl 29:. https://doi.org/10.2351/1.4983520

  91. Ruutiainen M, Roozbahani H, Alizadeh M et al (2022) Real-time monitoring and control of ultra-fast laser engraving process utilizing spectrometer. IEEE Access 10:27113–27120. https://doi.org/10.1109/ACCESS.2022.3156280

    Article  Google Scholar 

  92. Lu L (2021) Online monitoring in laser fabrication of multi-scale functional structures and its application. Dissertation, Beihang University

  93. Lu L, Zhang J, Guan K et al (2022) Artificial neural network for cytocompatibility and antibacterial enhancement induced by femtosecond laser micro/nano structures. J Nanobiotechnology 20:1–17. https://doi.org/10.1186/s12951-022-01578-4

    Article  CAS  Google Scholar 

  94. Manco E, Cozzolino E, Astarita A (2022) Laser polishing of additively manufactured metal parts: a review. Surf Eng 38:217–233. https://doi.org/10.1080/02670844.2022.2072080

    Article  CAS  Google Scholar 

  95. Deng T, Li J, Zheng Z (2020) Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation. Int J Mach Tools Manuf 148:103472. https://doi.org/10.1016/j.ijmachtools.2019.103472

    Article  Google Scholar 

  96. Solheid JS, Elkaseer A, Wunsch T et al (2022) Multiobjective optimization of laser polishing of additively manufactured Ti-6Al-4V parts for minimum surface roughness and heat-affected zone. Materials (Basel) 15:3323. https://doi.org/10.3390/ma15093323

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Caggiano A, Teti R, Alfieri V, Caiazzo F (2021) Automated laser polishing for surface finish enhancement of additive manufactured components for the automotive industry. Prod Eng 15:109–117. https://doi.org/10.1007/s11740-020-01007-1

    Article  Google Scholar 

  98. Vadali M, Ma C, Duffie NA et al (2012) Pulsed laser micro polishing: surface prediction model. J Manuf Process 14:307–315. https://doi.org/10.1016/j.jmapro.2012.03.001

    Article  Google Scholar 

  99. Ma C, Vadali M, Duffie NA et al (2013) Melt pool flow and surface evolution during pulsed laser micro polishing of Ti6Al4V. J Manuf Sci Eng 135:1–8. https://doi.org/10.1115/1.4025819

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52375302), and the Key Research and Develop Program of Ningbo (2023Z012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Guan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, M., Fan, Z., Lu, L. et al. Surface enhancement of metallic alloys by laser precision engineering. Weld World (2024). https://doi.org/10.1007/s40194-024-01704-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40194-024-01704-w

Keywords

Navigation