Skip to main content
Log in

Development, verification, and implementation of an eDNA detection assay for emydids with a case study on diamondback terrapins, Malaclemys terrapin, and red eared slider, Trachemys script elegans

  • Methods and Resources
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Globally, many pond turtles (Family Emydidae) are of conservation concern due to contracting ranges, increasingly fragmented habitats, and declining populations. One of these turtles, the diamondback terrapin (Malaclemys terrapin), is of concern within the United States, but surveying potential estuarine habitat for the presence of the species requires high levels of time and effort. Here a species-specific, probe-based qPCR assay for identifying terrapin DNA from environmental DNA (eDNA) is described. To expand the utility of this tool, the assay was designed to allow for potential detection of at least 19 other pond turtles taxa and the utility was tested by designing a second species-specific probe for red-eared slider (Trachemys scripta elegans) with a different fluorophore, which can be used simultaneously with the terrapin probe to detect either species. Probes were found to be species-specific and effective at detecting low levels of DNA for the target species, the diamondback terrapin (10 fg/µL) and the red-eared slider (100 fg/µL) in laboratory conditions. The assay also showed species-specific detection in environmental samples taken from field locations where one species or the other were known to reside. Through citizen science approaches, this assay could be used for discovering novel terrapin habitats, monitoring invasive red-eared slider populations or surveying other emydids, with species-specific probes, at a fraction of the cost of traditional surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agersnap S, Sigsgaard EE, Jensen MR, Avila MDP, Carl H, Møller PR, Krøs SL, Knudsen SW, Wisz MS, Thomsen PF (2022) A national scale bioblitz using citizen science and eDNA metabarcoding for monitoring coastal marine fish. Front Mar Sci 9:824100

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM (2014) Environmental conditions influence eDNA persistence in aquatic systems. Environ Sci Technol 48:1819–1827

    Article  ADS  CAS  PubMed  Google Scholar 

  • Biggs J, Ewald N, Valentini A, Gaboriaud C, Dejean T, Griffiths RA, Foster J, Wilkinson JW, Arnell A, Brotherton P, Williams P (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol Conserv 183:19–28

    Article  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinform 34(17):i884–i890

    Article  Google Scholar 

  • Connor NM (2020) Adapting new technologies for evaluating the ecology and distribution of the diamondback terrapin (Malaclemys terrapin) in Alabama. Dissertation, The University of Alabama at Birmingham

  • Converse PE, Kuchta SR, Hauswaldt JS, Roosenburg WM (2017) Turtle soup, prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin). PLoS ONE 12(8):e0181898

    Article  PubMed  PubMed Central  Google Scholar 

  • Davy CM, Kidd AG, Wilson CC (2015) Development and validation of environmental DNA -(eDNA) markers for detection of freshwater turtles. PLoS ONE 10(7):e0130965

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza LS, Godwin JC, Renshaw MA, Larson E (2016) Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS ONE 11(10):e0165273

    Article  PubMed  PubMed Central  Google Scholar 

  • Deiner K, Altermatt F (2014) Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9(2):e88786

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Desforges JE, Clarke J, Harmsen EJ, Jardine AM, Robichaud JA, Serré S, Chakrabarty P, Bennett JR, Hanna DE, Smol JP, Rytwinski T (2022) The alarming state of freshwater biodiversity in Canada. Can J Fish Aquat Sci 79(2):352–365

    Article  Google Scholar 

  • Doi H, Uchii K, Takahara T, Matsuhashi S, Yamanaka H, Minamoto T (2015) Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10(3):e0122763

    Article  PubMed  PubMed Central  Google Scholar 

  • Ernst CH, Lovich JE, Barbour RW (1994) Turtles of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Feist SM, Jones RL, Copley JL, Pearson LS, Berry GA, Qualls CP (2018) Development and validation of an environmental DNA method for detection of the alligator snapping turtle (Macrochelys temminckii). Chelonian Conserv Biol 17(2):271–279. https://doi.org/10.1371/journal.pone.0059520

    Article  Google Scholar 

  • Florisson JH, Tweedley JR, Walker TH, Chaplin JA (2018) Reef vision: a citizen science program for monitoring the fish faunas of artificial reefs. Fish Res 206:296–308

    Article  Google Scholar 

  • Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M (2017) Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif 12:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons JW, Lovich JE, Tucker AD, FitzSimmons NN, Greene JL (2001) Demographic and ecological factors affecting conservation and management of the diamondback terrapin (Malaclemys terrapin) in South Carolina. Chelonian Conserv Biol 4:66–74

    Google Scholar 

  • Global Invasive Species Database (2015) Species profile: Trachemys scripta elegans. http://www.iucngisd.org/gisd/speciesname/Trachemys+scripta+elegans. Accessed 13 April 2023

  • Guillen G, Gordon ML, Oakley J, Mokrech M, Alleman B, George R, Bush D (2015) Population survey of the Texas diamondback terrapin. Malaclemys terrapin littoralis, in San Antonio Bay, Matagorda Bay, and Sabine Lake. EIH Report 15 – 001

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Havermans C, Dischereit A, Pantiukhin D, Friedrich M, Murray A (2022) Environmental DNA in an ocean of change: status, challenges and prospects. Arquivos De Ciencias do Mar 55:298–337

    Article  Google Scholar 

  • Huver JR, Koprivnikar J, Johnson PTJ, Whyard S (2015) Development and application of an eDNA method to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecol Appl 25:991–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue N, Sato M, Furuichi N, Imaizumi T, Ushio M (2022) The relationship between eDNA density distribution and current fields around an artificial reef in the waters of Tateyama Bay, Japan. Metabarcoding Metagenom 6:e87415

    Article  Google Scholar 

  • Jane SF, Wilcox TM, McKelvey KS, Young MK, Schwartz MK, Lowe WH, Letcher BH, Whiteley AR (2015) Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol Ecol Resour 15:216–227

    Article  CAS  PubMed  Google Scholar 

  • Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) Sight-unseen detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157

    Article  Google Scholar 

  • Kelly RP, Gallego R, Jacobs-Palmer E (2018) The effect of tides on nearshore environmental DNA. PeerJ 6:e4521

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirtane AA, Wilder ML, Green HC (2019) Development and validation of rapid environmental DNA (eDNA) detection methods for bog turtle (Glyptemys muhlenbergii). PLoS ONE 14(11):e0222883

    Article  PubMed  PubMed Central  Google Scholar 

  • Klymus KE, Richter CA, Chapman DC, Paukert C (2015) Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol Conserv 183:77–84

    Article  Google Scholar 

  • Knapp M, Clarke AC, Horsburgh KA, Matisoo-Smith EA (2012) Setting the stage–Building and working in an ancient DNA laboratory. Anat Anz 194(1):3–6

    Article  CAS  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Asp Med 27(2–3):95–125

    Article  CAS  Google Scholar 

  • Lacoursière-Roussel A, Dubois Y, Normandeau E, Bernatchez L (2016) Improving herpetological surveys in eastern North America using the environmental DNA method. Genome 59(11):991–1007

    Article  PubMed  Google Scholar 

  • Lance RF, Guan X (2020) Variation in inhibitor effects on qPCR assays and implications for eDNA surveys. Can J Fish Aquat Sci 77(1):23–33

    Article  CAS  Google Scholar 

  • Leempoel K, Hebert T, Hadly EA (2020) A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proc R Soc B: Biol Sci 287:20192353

    Article  CAS  Google Scholar 

  • Lorenz MG, Aardema BW, Krumbein WE (1981) Interaction of marine sediment with DNA and DNA availability to nucleases. Mar Biol 64:225–230

    Article  CAS  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG), New Zealand

    Google Scholar 

  • Lynggaard C, Bertelsen MF, Jensen CV, Johnson MS, Frøslev TG, Olsen MT, Bohmann K (2022) Airborne environmental DNA for terrestrial vertebrate community monitoring. Cur Biol 32:701–707

    Article  CAS  Google Scholar 

  • McKee AM, Calhoun DL, Barichivich WJ, Spear SF, Goldberg CS, Glenn TC (2015) Assessment of environmental DNA for detecting presence of imperiled aquatic amphibian species in isolated wetlands. J Fish Wildl Manag 6(2):498–510

    Article  Google Scholar 

  • Pearson SH, Wiebe JJ (2018) Considering diamond-backed terrapin (Malaclemys terrapin) nesting habitat and reproductive productivity in the restoration of Gulf of Mexico coastal ecosystems. Ocean Coast Manag 155:8–14

    Article  Google Scholar 

  • Roosenburg WM, Baker PJ, Burke R, Dorcas ME, Wood RC (2019) Malaclemys terrapin. The IUCN red list of threatened species. E.T12695A507698

  • Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S, Walburn JW, Furlan EM (2022) Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys. Environ DNA 4:9–33

    Article  CAS  Google Scholar 

  • Seigel RA, Gibbons JW (1995) Workshop on the ecology, status, and management of the diamondback terrapin (Malaclemys terrapin). Chelonian Conserv Biol 1:240–243

    Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zoo 69:82–90

    Article  CAS  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigsgaard EE, Carl H, Møller PR, Thomsen PF (2015) Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Bio Conserv 183:46–52

    Article  Google Scholar 

  • Spear MJ, Embke HS, Krysan PJ, Vander Zanden MJ (2021) Application of eDNA as a tool for assessing fish population abundance. Environ DNA 3(1):83–91

    Article  CAS  Google Scholar 

  • Stanford CB, Iverson JB, Rhodin AG, van Dijk PP, Mittermeier RA, Kuchling G, Berry KH, Bertolero A, Bjorndal KA, Blanck TE, Buhlmann KA (2020) Turtles and tortoises are in trouble. Cur Biol 30(12):R721–R735

    Article  CAS  Google Scholar 

  • Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Cons 183:85–92

    Article  Google Scholar 

  • Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS ONE 7(4):e35868

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PloS One 8(3):e59520

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Lin S, Kelen GD, Quinn TC, Dick JD, Gaydos CA, Rothman RE (2002) Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens. J Clin Microbiol 40(9):3449–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like the thank the following people and institutions for providing tissues that contributed to the development of the multiprobe qPCR assay in this study: T. Hibbits and the Texas A&M University Biodiversity Research and Teaching Collection, J. K. Braun and B. S. Coyner and the Oklahoma Collection of Genomic Resources, R. Brown and A. Motta and the University of Kansas Herpetology collection, T. Lott and the Florida Museum of Natural History Genetic Resource Repository, and the non-profit group Texas Turtles. This is publication 36 of the Marine Genomics Laboratory.

Funding

Funding was provided by the Coastal Bend Bays & Estuaries Program (#2126).

Author information

Authors and Affiliations

Authors

Contributions

DP, AB, AF, EH and JT contributed to the study conception and design. DP and AB secured the funding. Material preparation, data collection and analysis were performed by AB, AF, EH, KL, RS and JT. The first draft of the manuscript was written by AF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Andrew T. Fields or David S. Portnoy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fields, A.T., Hunt, E.P., Lanoue, K. et al. Development, verification, and implementation of an eDNA detection assay for emydids with a case study on diamondback terrapins, Malaclemys terrapin, and red eared slider, Trachemys script elegans. Conservation Genet Resour 16, 147–157 (2024). https://doi.org/10.1007/s12686-023-01343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-023-01343-1

Keywords

Navigation