Skip to main content
Log in

Synchronous Mutual Learning Network and Asynchronous Multi-Scale Embedding Network for miRNA-Disease Association Prediction

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNA (miRNA) serves as a pivotal regulator of numerous cellular processes, and the identification of miRNA-disease associations (MDAs) is crucial for comprehending complex diseases. Recently, graph neural networks (GNN) have made significant advancements in MDA prediction. However, these methods tend to learn one type of node representation from a single heterogeneous network, ignoring the importance of multiple network topologies and node attributes. Here, we propose SMDAP (Sequence hierarchical modeling-based Mirna-Disease Association Prediction framework), a novel GNN-based framework that incorporates multiple network topologies and various node attributes including miRNA seed and full-length sequences to predict potential MDAs. Specifically, SMDAP consists of two types of MDA representation: following a heterogeneous pattern, we construct a transfer learning-like synchronous mutual learning network to learn the first MDA representation in conjunction with the miRNA seed sequence. Meanwhile, following a homogeneous pattern, we design a subgraph-inspired asynchronous multi-scale embedding network to obtain the second MDA representation based on the miRNA full-length sequence. Subsequently, an adaptive fusion approach is designed to combine the two branches such that we can score the MDAs by the downstream classifier and infer novel MDAs. Comprehensive experiments demonstrate that SMDAP integrates the advantages of multiple network topologies and node attributes into two branch representations. Moreover, the area under the receiver operating characteristic curve is 0.9622 on DB1, which is a 5.06% increase from the baselines. The area under the precision–recall curve is 0.9777, which is a 7.33% increase from the baselines. In addition, case studies on three human cancers validated the predictive performance of SMDAP. Overall, SMDAP represents a powerful tool for MDA prediction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Reichenstein I, Eitan C, Diaz-Garcia S et al (2019) Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Sci Transl Med 11:eaav5264. https://doi.org/10.1126/scitranslmed.aav5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ucar A, Gupta SK, Fiedler J et al (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1–11. https://doi.org/10.1038/ncomms2090

    Article  CAS  Google Scholar 

  5. Norsworthy PJ, Thompson AGB, Mok TH et al (2020) A blood miRNA signature associates with sporadic Creutzfeldt–Jakob disease diagnosis. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-17655-x

    Article  CAS  Google Scholar 

  6. Zheng K, You Z-H, Wang L et al (2020) DBMDA: a unified embedding for sequence-based miRNA similarity measure with applications to predict and validate miRNA-disease associations. Mol Ther Nucleic Acids 19:602–611. https://doi.org/10.1016/j.omtn.2019.12.010

    Article  CAS  PubMed  Google Scholar 

  7. Li H-Y, You Z-H, Wang L et al (2021) DF-MDA: an effective diffusion-based computational model for predicting miRNA-disease association. Mol Ther 29:1501–1511. https://doi.org/10.1016/j.ymthe.2021.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ji B-Y, You Z-H, Cheng L et al (2020) Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-63735-9

    Article  CAS  Google Scholar 

  9. Zhang Y, Chen M, Cheng X et al (2020) MSFSP: a novel miRNA–disease association prediction model by federating multiple-similarities fusion and space projection. Front Genet 11:389. https://doi.org/10.3389/fgene.2020.00389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang X, Luo J, Shen C et al (2021) Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction. Brief Bioinform 22:bbab174. https://doi.org/10.1093/bib/bbab174

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Chen X, Huang Q et al (2020) Seq-SymRF: a random forest model predicts potential miRNA-disease associations based on information of sequences and clinical symptoms. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-75005-9

    Article  CAS  Google Scholar 

  12. Li J, Zhang S, Liu T et al (2020) Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 36:2538–2546. https://doi.org/10.1093/bioinformatics/btz965

    Article  CAS  PubMed  Google Scholar 

  13. Liu D, Huang Y, Nie W et al (2021) SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost. BMC Bioinform 22:1–18. https://doi.org/10.1186/s12859-021-04135-2

    Article  CAS  Google Scholar 

  14. Ding Y, Tian L-P, Lei X et al (2021) Variational graph auto-encoders for miRNA-disease association prediction. Methods 192:25–34. https://doi.org/10.1016/j.ymeth.2020.08.004

    Article  CAS  PubMed  Google Scholar 

  15. Chen X, Xie D, Wang L et al (2018) BNPMDA: bipartite network projection for MiRNA–disease association prediction. Bioinformatics 34:3178–3186. https://doi.org/10.1093/bioinformatics/bty333

    Article  CAS  PubMed  Google Scholar 

  16. Li Z, Li J, Nie R et al (2021) A graph auto-encoder model for miRNA-disease associations prediction. Brief Bioinform 22:bbaa240. https://doi.org/10.1093/bib/bbaa240

    Article  CAS  PubMed  Google Scholar 

  17. Jin C, Shi Z, Lin K et al (2022) Predicting miRNA-disease association based on neural inductive matrix completion with graph autoencoders and self-attention mechanism. Biomolecules 12:64. https://doi.org/10.3390/biom12010064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu R, Ji C, Wang Y et al (2020) Heterogeneous graph convolutional networks and matrix completion for miRNA-disease association prediction. Front Bioeng Biotechnol 8:901. https://doi.org/10.3389/fbioe.2020.00901

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ding Y, Lei X, Liao B et al (2021) Predicting mirna-disease associations based on multi-view variational graph auto-encoder with matrix factorization. IEEE J Biomed Health Inform 26:446–457. https://doi.org/10.1109/jbhi.2021.3088342

    Article  Google Scholar 

  20. Chen X, Wang L, Qu J et al (2018) Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics 34:4256–4265. https://doi.org/10.1093/bioinformatics/bty503

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Sun L-G, Zhao Y (2021) NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 22:485–496. https://doi.org/10.1093/bib/bbz159

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Li S-X, Yin J et al (2020) Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization. Genomics 112:809–819. https://doi.org/10.1016/j.ygeno.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  23. Öztürk Ş, Çukur T (2023) Focal modulation network for lung segmentation in chest X-ray images. Turk J Electr Eng Comput Sci 31:1006–1020. https://doi.org/10.55730/1300-0632.4031

    Article  Google Scholar 

  24. Daşdemir Y, Özakar R (2022) Affective states classification performance of audio-visual stimuli from EEG signals with multiple-instance learning. Turk J Electr Eng Comput Sci 30:2707–2724. https://doi.org/10.55730/1300-0632.3964

    Article  Google Scholar 

  25. Zheng K, You Z-H, Wang L et al (2019) MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources. J Transl Med 17:1–14. https://doi.org/10.1186/s12967-019-2009-x

    Article  CAS  Google Scholar 

  26. Wang L, You Z-H, Chen X et al (2019) LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput Biol 15:e1006865. https://doi.org/10.1371/journal.pcbi.1006865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen X, Li T-H, Zhao Y et al (2021) Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 22:bbaa186. https://doi.org/10.1093/bib/bbaa186

    Article  CAS  PubMed  Google Scholar 

  28. Giorgi JM, Bader GD (2018) Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics 34:4087–4094. https://doi.org/10.1093/bioinformatics/bty449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petegrosso R, Park S, Hwang TH et al (2017) Transfer learning across ontologies for phenome–genome association prediction. Bioinformatics 33:529–536. https://doi.org/10.1093/bioinformatics/btw649

    Article  CAS  PubMed  Google Scholar 

  30. Akalin F, Yumuşak N (2022) Detection and classification of white blood cells with an improved deep learning-based approach. Turk J Electr Eng Comput Sci 30:2725–2739. https://doi.org/10.55730/1300-0632.3965

    Article  Google Scholar 

  31. Ünal Y, Öztürk Ş, Dudak MN et al (2022) Comparison of current convolutional neural network architectures for classification of damaged and undamaged cars. In: Advances in deep learning, artificial intelligence and robotics: proceedings of the 2nd international conference on deep learning, artificial intelligence and robotics (ICDLAIR) 2020. Springer, pp 141–149. https://doi.org/10.1007/978-3-030-85365-5_14

  32. Ma M, Na S, Zhang X et al (2022) SFGAE: a self-feature-based graph autoencoder model for miRNA–disease associations prediction. Brief Bioinform 23:bbac340. https://doi.org/10.1093/bib/bbac340

    Article  CAS  PubMed  Google Scholar 

  33. Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. Adv Neural Inf Process Syst. https://doi.org/10.48550/arXiv.1706.03762

    Article  Google Scholar 

  34. Berg R van den, Kipf TN, Welling M (2017) Graph convolutional matrix completion. arXiv preprint arXiv:170602263. https://doi.org/10.48550/arXiv.1706.02263

  35. Wu F, Souza A, Zhang T et al (2019) Simplifying graph convolutional networks. In: International conference on machine learning, vol 97. PMLR, pp 6861–6871.

  36. Wang X, Ji H, Shi C et al (2019) Heterogeneous graph attention network. In: The world wide web conference. pp 2022–2032. https://doi.org/10.1145/3308558.3313562

  37. Wang X, He X, Wang M et al (2019) Neural graph collaborative filtering. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval. pp 165–174. https://doi.org/10.1145/3331184.3331267

  38. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907. https://doi.org/10.48550/arXiv.1609.02907

  39. Xu K, Li C, Tian Y et al (2018) Representation learning on graphs with jumping knowledge networks. In: International conference on machine learning. PMLR, pp 5453–5462.

  40. Chen M, Wei Z, Huang Z et al (2020) Simple and deep graph convolutional networks. In: International conference on machine learning. PMLR, pp 1725–1735

  41. Sun F, Sun J, Zhao Q (2022) A deep learning method for predicting metabolite–disease associations via graph neural network. Brief Bioinform 23:bbac266. https://doi.org/10.1093/bib/bbac266

    Article  CAS  PubMed  Google Scholar 

  42. Wang W, Zhang L, Sun J et al (2022) Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field. Brief Bioinform 23:bbac463. https://doi.org/10.1093/bib/bbac463

    Article  CAS  PubMed  Google Scholar 

  43. Gao H, Sun J, Wang Y et al (2023) Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization. Brief Bioinform 24:bbad259. https://doi.org/10.1093/bib/bbad259

    Article  CAS  PubMed  Google Scholar 

  44. Wang T, Sun J, Zhao Q (2023) Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism. Comput Biol Med 153:106464. https://doi.org/10.1016/j.compbiomed.2022.106464

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Yang P, Feng H et al (2021) Using network distance analysis to predict lncRNA–miRNA interactions. Interdiscip Sci 13:535–545. https://doi.org/10.1007/s12539-021-00458-z

    Article  CAS  PubMed  Google Scholar 

  46. Chen X, Yin J, Qu J et al (2018) MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLoS Comput Biol 14:e1006418. https://doi.org/10.1371/journal.pcbi.1006418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y-T, Wu Q-W, Gao Z et al (2021) MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features. BMC Med Inform Decis Mak 21:1–13. https://doi.org/10.1186/s12911-020-01320-w

    Article  Google Scholar 

  48. Ji C, Gao Z, Ma X et al (2021) AEMDA: inferring miRNA–disease associations based on deep autoencoder. Bioinformatics 37:66–72. https://doi.org/10.1093/bioinformatics/btaa670

    Article  CAS  PubMed  Google Scholar 

  49. Jeffrey HJ (1990) Chaos game representation of gene structure. Nucleic Acids Res 18:2163–2170. https://doi.org/10.1093/nar/18.8.2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Yao H, Zhao S (2016) Auto-encoder based dimensionality reduction. Neurocomputing 184:232–242. https://doi.org/10.1016/j.neucom.2015.08.104

    Article  Google Scholar 

  51. Wang D, Wang J, Lu M et al (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26:1644–1650. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  PubMed  Google Scholar 

  52. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. pp 855–864. https://doi.org/10.1145/2939672.2939754

  53. Shu H, Wang X, Zhu H (2020) D-CCA: A decomposition-based canonical correlation analysis for high-dimensional datasets. J Am Stat Assoc 115:292–306. https://doi.org/10.1080/01621459.2018.1543599

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  54. Yang Z, Wu L, Wang A et al (2017) dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 45:D812–D818. https://doi.org/10.1093/nar/gkw1079

    Article  CAS  PubMed  Google Scholar 

  55. Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. https://doi.org/10.1093/nar/gkn714

    Article  CAS  PubMed  Google Scholar 

  56. Huang Z, Shi J, Gao Y et al (2019) HMDD v3. 0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res 47:D1013–D1017. https://doi.org/10.1093/nar/gky1010

    Article  CAS  PubMed  Google Scholar 

  57. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed  Google Scholar 

  58. Van Der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2625

    Google Scholar 

  59. Zhou S, Wang S, Wu Q et al (2020) Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression. Comput Biol Chem 85:107200. https://doi.org/10.1016/j.compbiolchem.2020.107200

    Article  CAS  PubMed  Google Scholar 

  60. Dai Q, Wang Z, Liu Z et al (2022) Predicting miRNA-disease associations using an ensemble learning framework with resampling method. Brief Bioinform 23:bbab543. https://doi.org/10.1093/bib/bbab543

    Article  CAS  PubMed  Google Scholar 

  61. Cho WCS, Chow ASC, Au JSK (2011) MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 8:125–131. https://doi.org/10.4161/rna.8.1.14259

    Article  CAS  PubMed  Google Scholar 

  62. Grose D, Morrison DS, Devereux G et al (2015) The impact of comorbidity upon determinants of outcome in patients with lung cancer. Lung Cancer 87:186–192. https://doi.org/10.1016/j.lungcan.2014.11.012

    Article  PubMed  Google Scholar 

  63. Iorio MV, Ferracin M, Liu C-G et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. https://doi.org/10.1158/0008-5472.CAN-05-1783

    Article  CAS  PubMed  Google Scholar 

  64. Takahashi R, Miyazaki H, Ochiya T (2015) The roles of microRNAs in breast cancer. Cancers (Basel) 7:598–616. https://doi.org/10.3390/cancers7020598

    Article  CAS  PubMed  Google Scholar 

  65. Luo X, Burwinkel B, Tao S et al (2011) MicroRNA signatures: novel biomarker for colorectal cancer? microRNA and colorectal cancer. Cancer Epidemiol Biomark Prev 20:1272–1286. https://doi.org/10.1158/1055-9965.EPI-11-0035

    Article  CAS  Google Scholar 

  66. Bandres E, Agirre X, Bitarte N et al (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 125:2737–2743. https://doi.org/10.1002/ijc.24638

    Article  CAS  PubMed  Google Scholar 

  67. Agarwal V, Bell GW, Nam J-W et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sakre N, Wildey G, Behtaj M et al (2017) RICTOR amplification identifies a subgroup in small cell lung cancer and predicts response to drugs targeting mTOR. Oncotarget 8:5992. https://doi.org/10.18632/oncotarget.13362

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771430), and Hubei Hongshan Laboratory. Model training was performed at the Hefei Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Contributions

WS: Methodology, Software, Writing—original draft. PZ: Methodology, Conceptualization, Writing—review and editing. WZ: Visualization, Investigation. JX: Formal analysis, Validation. YH: Data Curation. LL: Supervision, Writing—review and editing, Funding acquisition.

Corresponding author

Correspondence to Li Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Zhang, P., Zhang, W. et al. Synchronous Mutual Learning Network and Asynchronous Multi-Scale Embedding Network for miRNA-Disease Association Prediction. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-023-00602-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-023-00602-x

Keywords

Navigation