Skip to main content
Log in

A novel multi-fidelity surrogate modeling method for non-hierarchical data fusion

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Multi-fidelity (MF) surrogate model has been widely used in simulation-based engineering design processes to reduce the computational cost, with a focus on cases involving hierarchical low-fidelity (LF) data. However, accurately identifying and sorting the fidelity of LF models is challenging when dealing with non-hierarchical cases. In this paper, we propose a novel non-hierarchical MF surrogate framework called weighted multi-bi-fidelity (WMBF) to solve this problem. The proposed WMBF has both the advantage of two non-hierarchical frameworks, the weighted sum (WS) and parallel combination (PC) techniques, leveraging an entropy-based weight to include multiple-moments statistical information. It offers not only a weight with more information but also a more individualized scaling function within the weighted-sum framework, additionally a more individualized discrepancy function compared with existing methods. Moreover, it provides the idea of exploiting Kullback–Leibler (KL) divergence (an entropy-based metric) to characterize uncertainty for calculating weight within the WS framework. To validate the performance of the WMBF, we conduct evaluations using several numerical test functions and one engineering case. The result demonstrates that the WMBF achieves both accurate and robust predictions with minimal computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The MATLAB codes and the simulation data used to generate results are available upon request. All data and codes are available from the author upon reasonable request.

References

  1. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423 (ISBN: 0883-4237 Publisher: Institute of Mathematical Statistics)

    MathSciNet  Google Scholar 

  2. Kleijnen JPC (2008) Response surface methodology for constrained simulation optimization: an overview. Simul Model Pract Theory 16(1):50–64. https://doi.org/10.1016/j.simpat.2007.10.001. (Accessed 2022-12-14)

    Article  Google Scholar 

  3. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367. https://doi.org/10.1016/j.jcp.2010.12.021. (Accessed 2022-12-14)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9. https://doi.org/10.1016/j.simpat.2015.03.003. (Accessed 2022-12-14)

    Article  Google Scholar 

  5. Tripathy M (2010) Power transformer differential protection using neural network principal component analysis and radial basis function neural network. Simul Model Pract Theory 18(5):600–611. https://doi.org/10.1016/j.simpat.2010.01.003. (Accessed 2022-12-14)

    Article  Google Scholar 

  6. Viana FA, Simpson TW, Balabanov V, Toropov V (2014) Special section on multidisciplinary design optimization: Metamodeling in multidisciplinary design optimization: How far have we really come? AIAA J 52(4):670–690

    Article  ADS  Google Scholar 

  7. Yoo K, Bacarreza O, Aliabadi MHF (2022) A novel multi-fidelity modelling-based framework for reliability-based design optimisation of composite structures. Eng Comput 38(1):595–608. https://doi.org/10.1007/s00366-020-01084-x

    Article  Google Scholar 

  8. Zhou Q, Wu J, Xue T, Jin P (2021) A two-stage adaptive multi-fidelity surrogate model-assisted multi-objective genetic algorithm for computationally expensive problems. Eng Comput 37(1):623–639. https://doi.org/10.1007/s00366-019-00844-8

    Article  Google Scholar 

  9. Yang H, Wang Y (2022) A sparse multi-fidelity surrogate-based optimization method with computational awareness. Eng Comput. https://doi.org/10.1007/s00366-022-01766-8

    Article  Google Scholar 

  10. Liu J, Yi J, Zhou Q, Cheng Y (2022) A sequential multi-fidelity surrogate model-assisted contour prediction method for engineering problems with expensive simulations. Eng Comput 38(1):31–49. https://doi.org/10.1007/s00366-020-01043-6

    Article  Google Scholar 

  11. Fernández-Godino MG, Park C, Kim N-H, Haftka RT (2019) Review of multi-fidelity models. AIAA J 57(5):2039–2054. https://doi.org/10.2514/1.J057750. arXiv:1609.07196 [stat]. Accessed 2022-12-09

    Article  ADS  Google Scholar 

  12. Jiang P, Xie T, Zhou Q, Shao X, Hu J, Cao L (2018) A space mapping method based on Gaussian process model for variable fidelity metamodeling. Simul Model Pract Theory 81:64–84. https://doi.org/10.1016/j.simpat.2017.11.010. (Accessed 2022-12-14)

    Article  Google Scholar 

  13. Jin S-S, Kim ST, Park Y-H (2021) Combining point and distributed strain sensor for complementary data-fusion: a multi-fidelity approach. Mech Syst Signal Process 157:107725. https://doi.org/10.1016/j.ymssp.2021.107725. (Accessed 2022-12-14)

    Article  Google Scholar 

  14. Zhou Q, Wang Y, Choi S-K, Jiang P, Shao X, Hu J (2017) A sequential multi-fidelity metamodeling approach for data regression. Knowl-Based Syst 134:199–212. https://doi.org/10.1016/j.knosys.2017.07.033. (Accessed 2022-11-23)

    Article  CAS  Google Scholar 

  15. Zhou Q, Jiang P, Shao X, Hu J, Cao L, Wan L (2017) A variable fidelity information fusion method based on radial basis function. Adv Eng Inform 32:26–39. https://doi.org/10.1016/j.aei.2016.12.005. (Accessed 2022-12-14)

    Article  Google Scholar 

  16. Burgee SL, Watson LT, Giunta AA, Grossman B, Haftka RT, Mason WH (1994) Parallel multipoint variable-complexity approximations for multidisciplinary optimization. In: Proceedings of IEEE scalable high performance computing conference. IEEE Comput. Soc. Press, Knoxville, TN, USA, pp 734–740. https://doi.org/10.1109/SHPCC.1994.296714. http://ieeexplore.ieee.org/document/296714/. Accessed 2022-12-12

  17. Knill DL, Giunta AA, Baker CA, Grossman B, Mason WH, Haftka RT, Watson LT (1999) Response surface models combining linear and Euler aerodynamics for supersonic transport design. J Aircraft 36(1):75–86 (ISBN: 0021-8669)

    Article  Google Scholar 

  18. Robinson T, Eldred M, Willcox K, Haimes R (2006) Strategies for multifidelity optimization with variable dimensional hierarchical models. In: 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2006-1819. _eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2006-1819. https://arc.aiaa.org/doi/abs/10.2514/6.2006-1819. Accessed 2022-12-14

  19. Gano SE, Renaud JE, Sanders B (2005) Hybrid variable fidelity optimization by using a kriging-based scaling function. AIAA J 43(11):2422–2433 (ISBN: 0001-1452)

    Article  ADS  Google Scholar 

  20. Sun G, Li G, Stone M, Li Q (2010) A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials. Comput Mater Sci 49(3):500–511. https://doi.org/10.1016/j.commatsci.2010.05.041. (Accessed 2022-12-14)

    Article  Google Scholar 

  21. Sun G, Li G, Zhou S, Xu W, Yang X, Li Q (2011) Multi-fidelity optimization for sheet metal forming process. Struct Multidiscip Optim 44(1):111–124. https://doi.org/10.1007/s00158-010-0596-5. (Accessed 2022-12-14)

    Article  Google Scholar 

  22. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London (OCLC: 800035147)

    Google Scholar 

  23. Han Z-H, Görtz S (2012) Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA J 50(9):1885–1896 (ISBN: 0001-1452)

    Article  ADS  Google Scholar 

  24. Kennedy M (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13. https://doi.org/10.1093/biomet/87.1.1. (Accessed 2022-12-14)

    Article  MathSciNet  Google Scholar 

  25. Wauters J, Couckuyt I, Knudde N, Dhaene T, Degroote J (2020) Multi-objective optimization of a wing fence on an unmanned aerial vehicle using surrogate-derived gradients. Struct Multidiscip Optim 61(1):353–364. https://doi.org/10.1007/s00158-019-02364-x. (Accessed 2022-12-14)

    Article  MathSciNet  Google Scholar 

  26. Krishnan KVV, Ganguli R (2021) Multi-fidelity analysis and uncertainty quantification of beam vibration using co-kriging interpolation method. Appl Math Comput 398:125987. https://doi.org/10.1016/j.amc.2021.125987. (Accessed 2022-12-14)

    Article  MathSciNet  Google Scholar 

  27. Hu J, Zhou Q, Jiang P, Shao X, Xie T (2018) An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging. Eng Optim 50(1):145–163. https://doi.org/10.1080/0305215X.2017.1296435. (Accessed 2022-12-14)

    Article  Google Scholar 

  28. Xiao M, Zhang G, Breitkopf P, Villon P, Zhang W (2018) Extended co-Kriging interpolation method based on multi-fidelity data. Appl Math Comput 323:120–131. https://doi.org/10.1016/j.amc.2017.10.055. (Accessed 2022-11-22)

    Article  Google Scholar 

  29. Zhou Q, Wu Y, Guo Z, Hu J, Jin P (2020) A generalized hierarchical co-Kriging model for multi-fidelity data fusion. Struct Multidiscip Optim 62(4):1885–1904. https://doi.org/10.1007/s00158-020-02583-7. (Accessed 2022-11-22)

    Article  MathSciNet  Google Scholar 

  30. Zheng J, Shao X, Gao L, Jiang P, Li Z (2013) A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction. J Eng Des 24(8):604–622. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/09544828.2013.788135. Accessed 2022-12-13

  31. Fischer CC, Grandhi RV, Beran PS (2017) Bayesian low-fidelity correction approach to multi-fidelity aerospace design. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 0133

  32. Chen S, Jiang Z, Yang S, Apley DW, Chen W (2016) Nonhierarchical multi-model fusion using spatial random processes. Int J Numer Methods Eng 106(7):503–526. https://doi.org/10.1002/nme.5123. (Accessed 2022-12-09)

    Article  MathSciNet  Google Scholar 

  33. Zhang Y, Kim NH, Park C, Haftka RT (2018) Multifidelity surrogate based on single linear regression. AIAA J 56(12):4944–4952. https://doi.org/10.2514/1.J057299. (Accessed 2022-12-13)

    Article  ADS  CAS  Google Scholar 

  34. Zhang L, Wu Y, Jiang P, Choi S-K, Zhou Q (2022) A multi-fidelity surrogate modeling approach for incorporating multiple non-hierarchical low-fidelity data. Adv Eng Inform 51:101430. https://doi.org/10.1016/j.aei.2021.101430. (Accessed 2022-12-13)

    Article  Google Scholar 

  35. Cheng M, Jiang P, Hu J, Shu L, Zhou Q (2021) A multi-fidelity surrogate modeling method based on variance-weighted sum for the fusion of multiple non-hierarchical low-fidelity data. Struct Multidiscip Optim 64(6):3797–3818 (ISBN: 1615-1488 Publisher: Springer)

    Article  MathSciNet  Google Scholar 

  36. Lam R, Allaire DL, Willcox KE (2015) Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources. In: 56th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics, Kissimmee, Florida. https://doi.org/10.2514/6.2015-0143

  37. Shannon CE (1949) Communication theory of secrecy systems*. Bell Syst Tech J 28(4):656–715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

    Article  MathSciNet  Google Scholar 

  38. Csiszar I (1975) \$I\$-divergence geometry of probability distributions and minimization problems. Ann Probab 3(1):146–158. https://doi.org/10.1214/aop/1176996454

    Article  MathSciNet  Google Scholar 

  39. Palacios F, Alonso J, Duraisamy K, Colonno M, Hicken J, Aranake A, Campos A, Copeland S, Economon T, Lonkar A et al (2013) Stanford university unstructured (su 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 287

  40. Duan Y, Cai J, Li Y (2012) Gappy proper orthogonal decomposition-based two-step optimization for airfoil design. AIAA J 50(4):968–971. https://doi.org/10.2514/1.J050997

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12201656), Science and Technology Projects in Guangzhou (Grant No. SL2024A04J01579) and Key Laboratory of Information Systems Engineering (CN).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12201656), Science and Technology Projects in Guangzhou (Grant No. SL2024A04J01579) and Key Laboratory of Information Systems Engineering (CN).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Funding acquisition: HH; Methodology and analysis: SX; Resources-simulation software design: YD; Resources-simulation software calculation: XX; Writing-original draft preparation: SX; Writing-review and editing: HH; Supervision: HC.

Corresponding author

Correspondence to Hanyan Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent for publication

Publication consent was obtained from all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The numerical example expressions

Example 1

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= \sin {x}\\ y_{{\textrm{L1}}}&= y_{H} + 0.1(x-\pi )^{2}\\ y_{{\textrm{L2}}}&= 1.2y_{H} + 0.1(x-\pi )^{2} - 0.2 \\ 0&\le x \le 2\pi \end{aligned} \end{aligned}$$
(31)

Example 2

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= (6x-2)^{2}\sin {12x-4}\\ y_{{\textrm{L1}}}&= 0.5y_{H} +10(x-0.5)+5\\ y_{{\textrm{L2}}}&= 0.4y_{H} -x-1 \\ y_{{\textrm{L3}}}&= 0.3y_{H} 10x +6\\ 0&\le x \le 1 \end{aligned} \end{aligned}$$
(32)

Example 3

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= 2\sin {\pi x/5}\\ y_{{\textrm{L1}}}&= x(x-5)(x-12)/30 \\ y_{{\textrm{L2}}}&= (x+2)(x-5)(x-10)/30 \\ 0&\le x \le 10 \end{aligned} \end{aligned}$$
(33)

Example 4

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= 4 x_{1}^{2}-2.1x_{1}^{4}+x_{1}^{6}/3 +x_{1}x_{2} -4x_{2}^{2}+4x_{2}^{4}\\ y_{{\textrm{L1}}}&= y_{H}(0.7x_{1},0.7x_{2})+x_{1}x_{2}-65\\ y_{{\textrm{L2}}}&= y_{H}(0.8x_{1},0.6x_{2})-x_{1}^{4}+32\\ x_{1},x_{2}&\in [-2,2] \end{aligned} \end{aligned}$$
(34)

Example 5

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&=-\sin {x_{1}}- \exp (x_{1}/100)+x_{2}^{2}/10\\ y_{{\textrm{L1}}}&=-\sin {x_{1}}- \exp (x_{1}/100)+10.3\\ {}&\qquad +0.03(x_{1}-0.3)^{2}+(x_{2}-1)^{2}/10\\ y_{{\textrm{L2}}}&=-\sin {0.9x_{1}}- \exp (0.9x_{1}/100)+10+0.64x_{2}^{2}/10\\ x_{1},x_{2}&\in [0,1] \end{aligned} \end{aligned}$$
(35)

Example 6

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= x_{1}/2\left( \sqrt{1+(x_{1}+x_{3}^{2})x_{4}/x_{1}^{20}} -1 \right) \\ {}&\qquad +(x_{1}+3x_{4})e^{(1+\sin {x_{3}})}\\ y_{{\textrm{L1}}}&= 0.79(1+sin{x_{1}}/10)y^{H} -2x_{1}+x_{2}^{2}+x_{3}^{2}+0.5\\ y_{{\textrm{L2}}}&= y_{H}+e^{x_{3}/2}-x_{1}/10\\ x_{1},x_{2},&x_{3},x_{4} \in [0.5,1] \end{aligned} \end{aligned}$$
(36)

Example 7

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= \left[ 100(x_{2} - x_{1}^{2})^{2} + (x_{1} -1 )^{2} +100(x_{3}-x_{2}^{2})^{2} \right. \\&\qquad \left. +(x_{2}-1)^{2} + 100(x_{4}-x_{3}^{2})^{2} +(x_{3}-1)^{2} \right. \\ {}&\qquad \left. +100(x_{5}-x_{4}^{2})^{2} +(x_{4}-1)^{2} + 100(x_{6}-x_{5}^{2})^{2} \right. \\ {}&\qquad \left. +(x_{5}-1)^{2}\right] /100000\\ y_{{\textrm{L}}1}&= \left[ 100(x_{2} - x_{1}^{2})^{2} + 4(x_{1} -1 )^{2} +100(x_{3}-x_{2}^{2})^{2} \right. \\&\qquad \left. +4(x_{2}-1)^{2} + 100(x_{4}-x_{3}^{2})^{2} +4(x_{3}-1)^{2} \right. \\ {}&\qquad \left. +100(x_{5}-x_{4}^{2})^{2} +4(x_{4}-1)^{2} + 100(x_{6}-x_{5}^{2})^{2} \right. \\ {}&\qquad \left. +4(x_{5}-1)^{2}\right] /100000\\ y_{{\textrm{L}}2}&= \left[ 80(x_{2} - x_{1}^{2})^{2} + (x_{1} -1 )^{2} +80(x_{3}-x_{2}^{2})^{2} \right. \\&\qquad \left. +(x_{2}-1)^{2} + 80(x_{4}-x_{3}^{2})^{2} +(x_{3}-1)^{2} \right. \\ {}&\qquad \left. +80(x_{5}-x_{4}^{2})^{2} +(x_{4}-1)^{2}+ 80(x_{6}-x_{5}^{2})^{2} \right. \\ {}&\qquad \left. +(x_{5}-1)^{2}\right] /100000\\ y_{{\textrm{L}}3}&= \left[ 100(x_{2} - x_{1}^{2})^{2} +100(x_{3}-x_{2}^{2})^{2} + 100(x_{4}-x_{3}^{2})^{2} \right. \\&\qquad \left. +100(x_{5}-x_{4}^{2})^{2}+ 100(x_{6}-x_{5}^{2})^{2} \right] /100000\\ x_{i}&\in [-5,10], i=1,\ldots ,6 \end{aligned} \end{aligned}$$
(37)

Example 8

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= \frac{2\pi x_{3}(x_{4}-x{6})}{\ln {(x_{2}/x{1})\left[ 1+2x_{7}x_{4}/ \left( \ln {(x_{2}/x_{1})}x_{1}^{2} x_{8}\right) + x_{3}/x_{5}\right] }}\\ y_{{\textrm{L}}1}&= 0.4y_{{\textrm{H}}}+ x_{1}^{2} x_{8} + x_{1}x_{7}/x_{3} + x_{1}x_{6}/x_{2} + x_{1}^{2}x_{4}\\ y_{{\textrm{L}}2}&= 0.6y_{{\textrm{H}}} + 10 x_{1}x_{5}/x_{2} + x_{1}x_{8}/x_{4} + x_{1}^{3}x_{7}\\ x_{1}&\in [0.05,0.15];x_{2} \in [100,50000];x_{3} \in [63070,115600];\\ x_{4}&\in [990,1110];x_{5} \in [63.1,116];x_{6} \in [700,820];\\ x_{7}&\in [1120,1680];x_{8} \in [9855,12045]; \end{aligned} \end{aligned}$$
(38)

Example 9

$$\begin{aligned} \begin{aligned} y_{{\textrm{H}}}&= \sum \limits _{i=1}^{10}{x_{i}^{3}} +\left( \sum \limits _{i=1}^{10}{0.5 i x_{i}} \right) ^{2} + \left( \sum \limits _{i=1}^{10}{0.5 i x_{i}} \right) ^{4}\\ y_{{\textrm{L}}1}&= \sum \limits _{i=1}^{10}{x_{i}^{3}} +\left( \sum \limits _{i=1}^{10}{2 i x_{i}} \right) ^{2} + \left( \sum \limits _{i=1}^{10}{3 i x_{i}} \right) ^{4}\\ y_{{\textrm{L}}2}&= \sum \limits _{i=1}^{10}{x_{i}^{3}} +\left( \sum \limits _{i=1}^{10}{3 i x_{i}} \right) ^{2} + \left( \sum \limits _{i=1}^{10}{4 i x_{i}} \right) ^{4}\\ y_{{\textrm{L}}3}&= \sum \limits _{i=1}^{10}{x_{i}^{3}} +\left( \sum \limits _{i=1}^{10}{i x_{i}} \right) ^{2} + \left( \sum \limits _{i=1}^{10}{2 i x_{i}} \right) ^{4}\\ x_{i}&\in [-5,10], i=1,\ldots ,10 \end{aligned} \end{aligned}$$
(39)

Appendix 2: The sample size in Sect. 4.2.1

The fixed sample size and rate used in Sect. 4.2.1 are listed in Table 8, which are determined according to the mode of the optimal combinations of all methods.

Table 8 The fixed sample size and ratio used in Sect. 4.2.1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Huang, H., Xu, X. et al. A novel multi-fidelity surrogate modeling method for non-hierarchical data fusion. Engineering with Computers (2024). https://doi.org/10.1007/s00366-023-01937-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-023-01937-1

Keywords

Navigation