Skip to main content
Log in

Rindler trajectories in cloud of strings in 3rd order Lovelock gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper studies the Rindler trajectories in the Cloud of strings in 3rd-order Lovelock gravity. According to the generalization of the Letaw–Frenet equations for curved spacetime (ST), the trajectory will continue to accelerate linearly and uniformly throughout its motion. The ST of the Cloud of strings in 3rd-order Lovelock gravity, a boundary is established on the bound of the accelerated magnitude |a| for radially inward traveling trajectories in the expression of the BH mass m which is represented by \(|a|\le {\frac{ \left( b+1 \right) ^{3/2}}{3 \sqrt{3} m}}\). For a certain selection of asymptotic initial data h, the linearly uniformly accelerated trajectory always enters the BH for acceleration |a| greater than the bound value. To study the bound value by |a|, the radial linearly uniformly accelerated trajectory can only travel to infinity within a small radius or the distance of the closest approach. However, it is observed that when the bound \(|a| = {\frac{ \left( b+1 \right) ^{3/2}}{3 \sqrt{3} m}}\) is saturated, and this distance approaches its lowest value of \(r_b = {\frac{3m}{b+1}}\). We also demonstrate that the value of the acceleration has a limited constraint, there is always an extension of the closest approach \(r_b > {\frac{2m}{b+1}}\) for \(|a|\le B(m, h)\), for each set of finite asymptotic initial data h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Davies, P.C.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Math. Gen. 8(4), 609 (1975)

    Article  ADS  Google Scholar 

  2. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870 (1976)

    Article  CAS  ADS  Google Scholar 

  3. Kothawala, D., Padmanabhan, T.: Response of Unruh-DeWitt detector with time-dependent acceleration. Phys. Lett. B 690(2), 201–206 (2010)

    Article  CAS  ADS  Google Scholar 

  4. Padmanabhan, T.: Dark energy and gravity. Gen. Relativ. Gravit. 40(2), 529–564 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73(4), 046901 (2010)

    Article  ADS  Google Scholar 

  6. Padmanabhan, T.: Entropy density of spacetime and the Navier–Stokes fluid dynamics of null surfaces. Phys. Rev. D 83(4), 044048 (2011)

    Article  ADS  Google Scholar 

  7. Kolekar, S., Padmanabhan, T.: Action principle for the fluid-gravity correspondence and emergent gravity. Phys. Rev. D 85(2), 024004 (2012)

    Article  ADS  Google Scholar 

  8. Paithankar, K., Kolekar, S.: Bound on Rindler trajectories in a black hole spacetime. Phys. Rev. D 99(6), 064012 (2019)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  9. Rindler, W.: Hyperbolic motion in curved space time. Phys. Rev. 119(6), 2082 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  10. Kolekar, S., Louko, J.: Gravitational memory for uniformly accelerated observers. Phys. Rev. D 96(2), 024054 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ghosh, S.G., Papnoi, U., Maharaj, S.D.: Cloud of strings in third order Lovelock gravity. Phys. Rev. D 90(4), 044068 (2014)

    Article  ADS  Google Scholar 

  12. Deruelle, N., Farina-Busto, L.: Lovelock gravitational field equations in cosmology. Phys. Rev. D 41(12), 3696 (1990)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Marugán, G.M.: Dynamically generated four-dimensional models in Lovelock cosmology. Phys. Rev. D 46(10), 4340 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  14. Boulware, D.G., Deser, S.: String-generated gravity models. Phys. Rev. Lett. 55(24), 2656 (1985)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Zwiebach, B.: Curvature squared terms and string theories. Phys. Lett. B 156(5–6), 315–317 (1985)

    Article  ADS  Google Scholar 

  16. Cai, R.G., Ohta, N.: Black holes in pure Lovelock gravities. Phys. Rev. D 74(6), 064001 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Chakrabarti, A., Tchrakian, D.H.: Gravitation with superposed Gauss–Bonnet terms in higher dimensions: black hole metrics and maximal extensions. Phys. Rev. D 65(2), 024029 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  18. Kastor, D., Mann, R.: On black strings and branes in Lovelock gravity. J. High Energy Phys. 2006(04), 048 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. Letelier, P.S.: Clouds of strings in general relativity. Phys. Rev. D 20(6), 1294 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  20. Synge, J.L.: Relativity: the General Theory. Amsterdam, North Holland (1960)

  21. Camanho, X.O., Edelstein, J.D.: A Lovelock black hole bestiary. Class. Quantum Gravity 30(3), 035009 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  22. Paithankar, K., Kolekar, S.: Rindler horizons in the Schwarzschild spacetime. arXiv preprint arXiv:1906.05134 (2019)

  23. Kolekar, S., Padmanabhan, T.: Indistinguishability of thermal and quantum fluctuations. Class. Quantum Gravity 32(20), 202001 (2015)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Umair Shahzad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, M.U., Sadaf, A. Rindler trajectories in cloud of strings in 3rd order Lovelock gravity. Gen Relativ Gravit 56, 18 (2024). https://doi.org/10.1007/s10714-024-03200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03200-4

Keywords

Navigation