We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Mesoporous Gallium-Based Catalysts for Oxidative Dehydrogenation of Propane in the Presence of Carbon Dioxide

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The present study investigates a series of gallium-based catalysts supported on natural and composite aluminosilicate mesoporous supports in the CO2-assisted oxidative dehydrogenation of propane. The catalyst supports were prepared by mixing a functional material with a boehmite binder, the functional materials being derived from natural halloysite nanotubes (HNTs). Three different supports were used: pristine HNTs; HNTs with MCM-41 synthesized around halloysite; and HNTs with MCM-41 synthesized inside the halloysite lumen. The CO2-assisted oxidative propane dehydrogenation was tested in the range of 550–700°C at a CO2/C3H8 molar ratio of 2.0. All the catalysts showed comparable propane conversion (from 10–13% to 70–80%) and propylene selectivity (from 80–84 to 30–32%). The highest propylene space-time yield (6.5 mol kgcat–1 h–1) was observed for the Ga/HNT catalyst at 650°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Li, G., Liu, C., Cui, X., Yang, Y., and Shi, F., Green Chem., 2021, vol. 23, no. 2, pp. 689–707. https://doi.org/10.1039/d0gc03705b

    Article  CAS  Google Scholar 

  2. Calamur, N. and Carrera, M., Propylene, in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, 2000, pp. 1–25. https://doi.org/10.1002/0471238961.1618151603011201.a01

  3. Zimmermann, H., Propene, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, pp. 1–18. https://doi.org/10.1002/14356007.a22_211.pub3

  4. Sattler, J.J.H.B. and Ruiz-Martinez, J., SantillanJimenez, E., Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, no. 20, pp. 10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  PubMed  Google Scholar 

  5. Caspary, K.J., Gehrke, H., Heinritz-Adrian, M., and Schwefer, M., Dehydrogenation of Alkanes, in Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008, pp. 3206–3229.

  6. Melnikov, D.P., Novikov, A.A., Glotov, A.P., Reshetina, M.V., Smirnova, E.M., Wang, H.Q., and Vinokurov, V.A., Petrol. Chem., 2022, vol. 62, no. 9, pp. 1027–1046. https://doi.org/10.1134/S096554412209006

    Article  CAS  Google Scholar 

  7. Mukherjee, D., Park, S.-E.E., and Reddy, B.M., J. CO2 Util., 2016, vol. 16, pp. 301–312. https://doi.org/10.1016/j.jcou.2016.08.005

    Article  CAS  Google Scholar 

  8. Routray, K., Reddy, K.R.S., and Deo, G., Appl. Catal. A: General, 2004, vol. 265, no. 1, pp. 103–113. https://doi.org/10.1016/j.apcata.2004.01.006

    Article  CAS  Google Scholar 

  9. Chernyak, S.A., Kustov, A.L., Stolbov, D.N., Tedeeva, M.A., Isaikina, O.Y., Maslakov, K.I., Usol’tseva, N.V., and Savilov, S.V., Appl. Surface Sci., 2022, vol. 578, nos. 0169–4332, pp. 152099. https://doi.org/10.1016/j.apsusc.2021.152099

    Article  CAS  Google Scholar 

  10. Tedeeva, M.A., Kustov, A.L., Pribytkov, P.V., Evdokimenko, N.D., Sarkar, B., and Kustov, L.M., Mendeleev Commun., 2020, vol. 30, no. 2, pp. 195–197. https://doi.org/10.1016/j.mencom.2020.03.022

    Article  CAS  Google Scholar 

  11. Tedeeva, M.A., Kustov, A.L., Pribytkov, P.V., Kapustin, G.I., Leonov, A.V., Tkachenko, O.P., Tursunov, O.B., Evdokimenko, N.D., and Kustov, L.M., Fuel, 2022, vol. 313, no. September 2021, p. 122698. https://doi.org/10.1016/j.fuel.2021.122698

    Article  CAS  Google Scholar 

  12. Shao, C.T., Lang, W.Z., Yan, X., and Guo, Y.J., RSC Adv., 2017, vol. 7, no. 8, pp. 4710–4723. https://doi.org/10.1039/c6ra27204e

    Article  CAS  ADS  Google Scholar 

  13. Sokolov, S., Stoyanova, M., Rodemerck, U., Linke, D., and Kondratenko, E.V., J. Catal., 2012, vol. 293, pp. 67–75. https://doi.org/10.1016/j.jcat.2012.06.005

    Article  CAS  Google Scholar 

  14. Takahara, I., Chang, W.-C., Mimura, N., and Saito, M., Catal. Today, 1998, vol. 45, nos. 1–4, pp. 55–59. https://doi.org/10.1016/S0920-5861(98)00245-4

    Article  CAS  Google Scholar 

  15. Al-Ghamdi, S.A. and de Lasa, H.I., Fuel, 2014, vol. 128, pp. 120–140. https://doi.org/10.1016/j.fuel.2014.02.033

    Article  CAS  Google Scholar 

  16. Nazimov, D.A., Klimov, O.V., Saiko, A.V., Trukhan, S.N., Glazneva, T.S., Prosvirin, I.P., Cherepanova, S.V., and Noskov, A.S., Catal. Today, 2021, vol. 375, no. 2019, pp. 401–409. https://doi.org/10.1016/j.cattod.2020.03.005

    Article  CAS  Google Scholar 

  17. Nazimov, D.A., Klimov, O.V., Danilova, I.G., Trukhan, S.N., Saiko, A.V., Cherepanova, S.V., Chesalov, Y.A., Martyanov, O.N., and Noskov, A.S., J. Catal., 2020, vol. 391, pp. 35–47. https://doi.org/10.1016/j.jcat.2020.08.006

    Article  CAS  Google Scholar 

  18. Vinokurov, V.A., Stavitskaya, A.V., Glotov, A.P., Novikov, A.A., Zolotukhina, A.V., Kotelev, M.S., Gushchin, P.A., Ivanov, E.V., Darrat, Y., and Lvov, Y.M., Chem. Record., 2018, vol. 18, nos. 7–8, pp. 858–867. https://doi.org/10.1002/tcr.201700089

    Article  CAS  Google Scholar 

  19. Glotov, A., Vutolkina, A., Pimerzin, A., Vinokurov, V., and Lvov, Y., Chem. Soc. Rev., 2021, vol. 50, no. 16, pp. 9240–9277. https://doi.org/10.1039/d1cs00502b

    Article  CAS  PubMed  Google Scholar 

  20. Melnikov, D., Smirnova, E., Reshetina, M., Novikov, A., Wang, H., Ivanov, E., Vinokurov, V., and Glotov, A., Catalyst., 2023, vol. 13, no. 5, pp. 882. https://doi.org/10.3390/catal13050882

    Article  CAS  Google Scholar 

  21. Saha, R., Nandi, R., and Saha, B., J. Coord. Chem., 2011, vol. 64, no. 10, pp. 1782–1806. https://doi.org/10.1080/00958972.2011.583646

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Science and Higher Education of the Russian Federation (theme: Metastable Catalysts Prepared by Laser Treatment in a Liquid for Efficient Dehydrogenation of Alkanes; agreement no. 075-15-2021-1386, code 13.2251.21.0100).

The study was performed at the Northwestern Polytechnical University and supported by the National Natural Science Foundation of China (NSFC, project no. SQ2020YFE010397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Melnikov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, D.P., Smirnova, E.M., Reshetina, M.V. et al. Mesoporous Gallium-Based Catalysts for Oxidative Dehydrogenation of Propane in the Presence of Carbon Dioxide. Pet. Chem. 63, 1228–1234 (2023). https://doi.org/10.1134/S0965544123090049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123090049

Keywords:

Navigation