Skip to main content
Log in

On Vietoris–Rips complexes of finite metric spaces with scale 2

  • Published:
Journal of Homotopy and Related Structures Aims and scope Submit manuscript

Abstract

We examine the homotopy types of Vietoris–Rips complexes on certain finite metric spaces at scale 2. We consider the collections of subsets of \([m]=\{1, 2, \ldots , m\}\) equipped with symmetric difference metric d, specifically, \({\mathcal {F}}^m_n\), \({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}\), \({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2}\), and \({\mathcal {F}}_{\preceq A}^m\). Here \({\mathcal {F}}^m_n\) is the collection of size n subsets of [m] and \({\mathcal {F}}_{\preceq A}^m\) is the collection of subsets \(\preceq A\) where \(\preceq \) is a total order on the collections of subsets of [m] and \(A\subseteq [m]\) (see the definition of \(\preceq \) in Sect. 1). We prove that the Vietoris–Rips complexes \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}^m_n, 2)\) and \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}, 2)\) are either contractible or homotopy equivalent to a wedge sum of \(S^2\)’s; also, the complexes \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2}, 2)\) and \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_{\preceq A}^m, 2)\) are either contractible or homotopy equivalent to a wedge sum of \(S^3\)’s. We provide inductive formulae for these homotopy types extending the result of Barmak about the independence complexes of Kneser graphs KG\(_{2, k}\) and the result of Adamaszek and Adams about Vietoris–Rips complexes of hypercube graphs with scale 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Adamaszek, M., Adams, H.: The Vietoris–Rips complex of a circle. Pacific J. Math. 290, 1–40 (2017)

    Article  MathSciNet  Google Scholar 

  2. Adamaszek, M., Adams, H.: On Vietoris–Rips complexes of hypercubegraphs. J. Appl. Comput. Topol. 6, 177–192 (2022)

    Article  MathSciNet  Google Scholar 

  3. Adams, H., Shukla, S., Singh, A.: Čech complexes of hypercube graphs. arxiv: 2212.05871

  4. Bauer, U.: Ripser: efficient computation of Vietoris–Rips persistence barcodes. J. Appl. Comput. Topol., 1–21 (2021)

  5. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  Google Scholar 

  6. De Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006)

    Article  Google Scholar 

  7. De Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algeb. Geom. Topol. 7(1), 339–358 (2007)

    Article  MathSciNet  Google Scholar 

  8. Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: A complete characterization of the one-dimensional intrinsic Čech persistence diagrams for metric graphs. In: Research in Computational Topology, 33–56, Springer (2018)

  9. Gawrilow, E., Joswig, M.: Polymake: A framework for analyzing covex polytopes, In Polytopes-combinatorics and computation (Oberwolfach, 1997), volume 29 of DMV Sem., pages 43–73. Birkhäuser, Basel, (2000)

  10. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  Google Scholar 

  11. Ghrist, R., Muhammad, A.: Coverage and hole detection in sensor networks via homology. In: Proc. Information Processing in Sensor Networks (2005)

  12. Goyal, S., Shukla, S., Singh, A.: Topology of clique complexes of line graphs. Art Disc. Appl. Math. 5(2), 12 (2022). (Paper No. 2.06)

    MathSciNet  Google Scholar 

  13. Gromov, M.: Hyperbolic Groups. Essays in group theory, pp. 75–263. Springer, New York (1987)

    Google Scholar 

  14. Jonathan, A.B.: Star clusters in independence complexes of graphs. Adv. Math. 241, 33–57 (2013)

    Article  MathSciNet  Google Scholar 

  15. Shukla, S.: On Vietoris–Rips complexes (with scales 3) of hypercube graphs. SIAM J. Disc. Math. 37(3), 1472–1495 (2023). https://doi.org/10.48550/arXiv.2202.02756

    Article  MathSciNet  Google Scholar 

  16. Singh, G., Mémoli, F., Carlsson, G.: Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. In: Botsch, M., Pajarola R. (eds) Eurographics symposium on point-based graphics (2007)

  17. Vietoris, L.: Über den höheren Zusammenhang kompakter Räume und eine Klassse von zusammenhangstreuen Abbildungen. Mathematische Annalen 97(1), 454–472 (1927)

    Article  MathSciNet  Google Scholar 

  18. Virk, Ž: Approximating \(1\)-dimensional intrinsic persistence of geodesic spaces and their stability. Revista Matemática Complutense 32, 195–213 (2019)

    Article  MathSciNet  Google Scholar 

  19. Virk, Ž: \(1\)-Dimensional intrinsic persistence of geodesic spaces. J. Topol. Anal. 12, 169–207 (2020)

  20. Zhang, S., Xiao, M., Wang, H.: GPU-accelerated computation of Vietoris–Rips persistence barcodes. https://doi.org/10.48550/arXiv.2003.07989

Download references

Acknowledgements

The authors are grateful to Professor Henry Adams and the anonymous referees for their valuable comments and suggestions which lead to the improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqin Feng.

Additional information

Communicated by Martin Raussen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Nukala, N.C.P. On Vietoris–Rips complexes of finite metric spaces with scale 2. J. Homotopy Relat. Struct. 19, 79–98 (2024). https://doi.org/10.1007/s40062-024-00340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40062-024-00340-x

Keywords

Mathematics Subject Classification

Navigation