Skip to main content
Log in

An Improvement to Prandtl’s 1933 Model for Minimizing Induced Drag

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider Prandtl’s 1933 model for calculating circulation distribution function \(\Gamma \) of a finite wing which minimizes induced drag, under the constraints of prescribed total lift and moment of inertia. We prove existence of a global minimizer of the problem without the restriction of nonnegativity \(\Gamma \ge 0\) in an appropriate function space. We also consider an improved model, where the prescribed moment of inertia takes into account the bending moment due to the weight of the wing itself, which leads to a more efficient solution than Prandtl’s 1933 result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We note that there is a computation error in (9) in the Prandtl’s paper, where “\(\sqrt{2}\)” is missing, this is a consequence of the fact that “64” in the constraint [15, (8)] should be replaced by “128”.

  2. Note that taking \(\mu =0\) in (10) gives circulation distribution \(\Gamma (\xi ) = \Gamma _0 \sqrt{1-\xi ^2}\), whose plot is an arc of an ellipse, hence “elliptic case” or “elliptic distribution”.

References

  1. Eta aircraft. https://www.leichtwerk.de/eta-aircraft/en/news/index.html (2005). Accessed 07 Jan 2024

  2. Concordia–supersegler. https://concordia-sailplane.com/ (2020). Accessed 07 Jan 2024

  3. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume No. 55 of National Bureau of Standards Applied Mathematics Series. U. S. Government Printing Office, Washington, DC, For sale by the Superintendent of Documents (1964)

  4. Betz, A., Prandtl, L.: Vier abhandlungen zur hydrodynamik und aerodynamik. Göttingen, also available in Prandtl “Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik”, Vol. 1, pp. 322–372 (1927)

  5. Bowers, A.H., Murillo, O.J., Jensen, R., Eslinger, B., Gelzer, C.: On wings of the minimum induced drag: Spanload implications for aircraft and birds, NASA report TP-2016-219072 (2016)

  6. Fish, F.E., Battle, J.M.: Hydrodynamic design of the Humpback Whale Flipper. J. Morphol. 225:51–60, https://www.wcupa.edu/sciences-mathematics/biology/fFish/documents/1995JMorph-Humpback.pdf (1995)

  7. Houghton, E.L., Carpenter, P.W., Collicott, S.H., Valentine, D.T.: Aerodynamics for engineering students. Elsevier, Sixth edition, ISBN 978-0-08-096632-8 (2013)

  8. Miklosovic, D.S., Murray, M.M., Howle, L.E., Fish, F.E.: Leading-edge tubercles delay stall on humpback whale flippers. Phys. Fluids 16(5), 39–42 (2004)

    Article  Google Scholar 

  9. Newton, L.J., Stability and control derivative estimation for the bell-shaped lift distribution: AIAA SciTech Forum, 7–11 January 2019. San Diego, CA (2019) https://doi.org/10.2514/6.2019-0157

  10. Philips, W.F., Hunsaker, D.F.: Designing wing twist or planform distributions for specified lift distributions. J. Aircr. 56(2), 847–849 (2019). https://doi.org/10.2514/1.C035206

    Article  Google Scholar 

  11. Philips, W.F., Hunsaker, D.F., Joo, J.J.: Minimizing induced drag with lift distribution and wingspan. J. Aircr. 56(2), 431–441 (2019). https://doi.org/10.2514/1.C035027

    Article  Google Scholar 

  12. Philips, W.F., Hunsaker, D.F., Taylor, J.D.: Minimising induced drag with weight distribution, lift distribution, wingspan, and wing-structure weight. Aeronaut. J. 124(1278), 1208–1235 (2020). https://doi.org/10.1017/aer.2020.24

    Article  Google Scholar 

  13. Prandtl, L.: Applications of modern hydrodynamics to aeronautics. NACA-Report No. 116, pp. 7–61; also available in Prandtl “Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik”, Vol. 1, pp. 433–515 (1927)

  14. Prandtl, L.: Tragflügeltheorie. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematische Klasse, pages 151–177, available in Betz and Prandtl “Vier Abhandlungen zur Hydrodynamik und Aerodynamik”, Göttingen, 1927, and in Prandtl “Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik”, Vol. 1, pp. 322–372 (1918)

  15. Prandtl, L.: Über tragflügel kleinsten induzierten widerstandes. Z. Flugtechn. Motorl., 24:305–306 . available in Prandtl “Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik”, Vol. 1, pp. 556–561; English translation (by D. F. Hunsaker and W. F. Philips) (1933). https://doi.org/10.2514/6.2020-0644

  16. Robinson, J.C.: An introduction to Functional Analysis. Cambridge University Press, London (2020)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech S. Ożański.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Chebyshev Polynomials

We recall [3, Section 22] Chebyshev polynomials \(T_n\), \(U_n\) of the first kind and second kind, respectively, defined by

$$\begin{aligned} T_0(x) = U_0 (x) :=1, \quad T_1(x) :=x, \quad U_1 (x) :=2x, \end{aligned}$$
(A.27)

and by

$$\begin{aligned} \begin{aligned} T_{n+1} (x)&:=2x T_n (x) -T_{n-1} (x),\\ U_{n+1} (x)&:=2x U_n (x) - U_{n-1} (x) \end{aligned} \end{aligned}$$
(A.28)

for \(n\ge 1\). The Chebyshev polynomials are related to each other in a number of remarkable ways. Here we only list those properties used in the note. First, we have

$$\begin{aligned} U_n' = \frac{xU_n - (n+1) T_{n+1}}{1-x^2} \end{aligned}$$
(A.29)

for all n. Second,

$$\begin{aligned} \int _{-1}^1 \frac{T_n (y) }{\sqrt{1-y^2} (x-y) } \textrm{d}y = - \pi U_{n-1} (x) \end{aligned}$$
(A.30)

for all. Finally, the \(U_n\)’s form an orthonormal basis of H (recall (13)), with

$$\begin{aligned} \int _{-1}^1 U_n (x) U_m(x) \sqrt{1-x^2} \textrm{d}x = {\left\{ \begin{array}{ll} 0\qquad &{}m\ne n,\\ \pi /2 &{} m=n. \end{array}\right. } \end{aligned}$$
(A.31)

Convex Sets in Banach Spaces

Here we prove the following fact relating convex sets in Banach spaces and weak convergence.

Lemma B.1

(Convex sets in Banach spaces and weak limits) Let XY be real Banach spaces. Suppose that \(x_k \rightharpoonup x\) in X as \(k\rightarrow \infty \), and that \(A_k,A \in B(X,Y)\) are such that \(\Vert A_k - A \Vert _{B(X,Y)} \rightarrow 0\) as \(k\rightarrow \infty \). Let \(K\subset Y\) be a closed convex set. Then,

$$\begin{aligned} \text { if }A_kx_k \in K\text { for all }k,\qquad \text { then }\qquad Ax \in K. \end{aligned}$$

Proof

Let \(l\in Y^*\) denote any supporting hyperplane of K in Y, i.e.

$$\begin{aligned} K\subset \{ y\in Y :l(y)\le l_0 \} \end{aligned}$$

for some \(l_0\in R\). Since \(\{ x_k \}\) converges weakly, it is bounded, and so there exists \(M>0\) such that \(\Vert x_k \Vert \le M\) for all k. Given \(\varepsilon >0\) we let k be sufficiently large so that

$$\begin{aligned} |l(A(x-x_k)|\le \frac{\varepsilon }{2} \qquad \text { and }\qquad \Vert A-A_k \Vert \le \frac{\varepsilon }{2\Vert l \Vert _{Y^*}M}. \end{aligned}$$
(B.32)

Note that such choice is possible by assumptions, since \(l\circ A \in X^*\). We obtain

$$\begin{aligned} \begin{aligned} l(Ax)&= l(A(x-x_k)) + l((A-A_k)x_k ) + l(A_k x_k ) \\&\lesssim |l(A(x-x_k))| + \Vert l \Vert _{Y^*} \Vert A- A_k \Vert M + l_0 \\&\le l_0 + \varepsilon , \end{aligned} \end{aligned}$$

where we used the assumption \(A_kx_k\in K\) in the second line and (B.32) in the last. Taking \(\varepsilon \rightarrow 0\) we thus have that \(l(Ax) \le l_0\), and the claim follows, since every closed convex set in Y equals to the intersection of all its supporting hyperplanes (see [16, Corollary 21.8], for example). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ożański, W.S. An Improvement to Prandtl’s 1933 Model for Minimizing Induced Drag. Appl Math Optim 89, 39 (2024). https://doi.org/10.1007/s00245-024-10107-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10107-8

Keywords

Navigation