Skip to main content
Log in

Evaluation of Groundwater Quality for Irrigation Purposes Using Water Quality Indices and GIS Technique: a Case Study of Seriana Plain Northeastern Algeria

  • GEOECOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater stands as the primary water source in the Seriana plain, situated in the northeastern region of Algeria. This study, conducted in 2019, involved the establishment of twelve groundwater monitoring during both wet and dry seasons. The collected samples underwent analysis to assess groundwater suitability for irrigation based on thirteen key quality parameters, including calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (\({\text{HCO}}_{3}^{ - }\)), nitrate (\({\text{NO}}_{3}^{ - }\)), chloride (Cl), sulfate (\({\text{SO}}_{4}^{{2 - }}\)), hydrogen ion concentration (pH), and electrical conductivity (EC).To evaluate groundwater, the Irrigation Water Quality Index (IRWQI) was employed, incorporating various indices such as sodium percentage (Na%), Sodium Absorption Ratio (SAR), Residual Sodium Bicarbonate (RSBC), permeability index (PI), Kelly ratio (KR), magnesium hazard (MH), potential salinity (PS), and other ratios calculated using standard formulas. In a Geographical Information System (GIS) environment, Inverse Distance Weighted (IDW) interpolation was utilized to create spatial distribution maps for the calculated irrigation water quality indices and the IRWQI. These spatial distribution maps of the Irrigation Water Quality Index (IRWQI) offer a comprehensive perspective. The analysis findings emphasize the detrimental influence of anthropogenic activities on the groundwater in this region. It underscores the urgent necessity for an effective management strategy to prevent further contamination and pollution. Additionally, it is imperative to treat the groundwater before utilizing it for irrigation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. A. Shiklomanov, Water Int. 25 (1), 11–32 (2000). https://doi.org/10.1080/02508060008686794

    Article  Google Scholar 

  2. P. Tirkey, T. Bhattacharya, S. Chakraborty, and S.  Baraik, Groundwater Sust. Develop. 5, 85–100 (2017). https://doi.org/10.1016/j.gsd.2017.05.002

    Article  Google Scholar 

  3. M. Kurdi, S. Tabasi, T. Eslamkish, and A. Hezarkhani, Elixir Geosci. 62, 17536–17541 (2013).

    Google Scholar 

  4. F. Khan, S. Krishnaraj, P. Raja, G. Selvaraj, and R. Cheelil, Environ. Sci. Pollut. Res. 28, 18567–18588 (2021). https://doi.org/10.1007/s11356-020-10912-y

    Article  CAS  Google Scholar 

  5. Y. V. Aleksandrovskii, Hydrotech. Construct. 5 (8), 701–708 (1971). https://doi.org/10.1007/BF02403613

    Article  Google Scholar 

  6. N. S. Rao, A. Dinakar, M. Sravanthi, and B. K. Kumari, Environ. Sci. Pollut. Res. 28, 31941–31961 (2021). https://doi.org/10.1007/s11356-021-12404-z

    Article  CAS  Google Scholar 

  7. A. H. Jagaba, S. R. M. Kutty, G. Hayder, L. Baloo, S. Abubakar, A. A. S. Ghaleb, and N. M. Y. Almahbashi, Ain Shams Eng. J. 11 (4), 983–999 (2020). https://doi.org/10.1016/j.asej.2020.02.004

    Article  Google Scholar 

  8. S. Arya, T. Subramani, G. Vennila, and P. D. Roy, Geochemistry 80 (4), 125635 (2020). https://doi.org/10.1016/j.chemer.2020.125635

    Article  CAS  Google Scholar 

  9. L. G. Quist, R. R. Bannerman, and S. Owusu, Report of the West African Sub-Regional Workshop (Accra, 1986), pp. 20–24.

  10. D. Marghade, D. B. Malpe, K. Duraisamy, P. D. Patil, and P. Li, Environ. Sci. Pollut. Res. 28, 18471–18494 (2021). https://doi.org/10.1007/s11356-020-10032-7

    Article  CAS  Google Scholar 

  11. S. K. Singh, P. Singh, and S. K. Gautam, Int. J. Environ. Sci. Technol. 13, 445–456 (2016). https://doi.org/10.1007/s13762-015-0850-x

    Article  Google Scholar 

  12. T. G. A. Jacintha, K. S. Rawat, A. Mishra, and S. K. Singh, Appl. Water Sci. 7, 3001–3013 (2017). https://doi.org/10.1007/s13201-016-04000-9

    Article  ADS  CAS  Google Scholar 

  13. K. Nageswara Rao, P. Swarna Latha, and P. V. Ramesh Kumar, Water Supply 22 (3), 2612–2629 (2022). https://doi.org/10.2166/ws.2021.454

    Article  CAS  Google Scholar 

  14. N. S. Kawo and S. Karuppannan, J. Afr. Earth Sci. 147, 300–311 (2018). https://doi.org/10.1016/j.jafrearsci.2018.06.034

    Article  ADS  CAS  Google Scholar 

  15. WHO Progress on Drinking Water and Sanitation (World Health Organization & UNICEF, New York, 2012).

  16. K. Sravanthi and V. Sudarshan, Environ. Geochem. 1 (2), 81–88 (1998).

    Google Scholar 

  17. B. R. Hanson, S. R. Grattan, and A. Fulton, Agricultural Salinity and Drainage Division of Agriculture and Natural Resources Publication No. 3375 (Univ. of California, Berkeley, 2006).

  18. V. A. Kovda, in Arid Land Irrigation in Developing Countries (Pergamon, 1977), pp. 211–235. https://doi.org/10.1016/B978-0-08-021588-4.50034-8

  19. T. Subramani, L. Elango, and S. R. Damodarasamy, Environ. Geol. 47, 1099–1110 (2005). https://doi.org/10.1007/s00254-005-1243-0

    Article  CAS  Google Scholar 

  20. M. Kumar, K. Kumari, A. L. Ramanathan, and R. Saxena, Environ. Geol. 53, 553–574 (2007). https://doi.org/10.1007/s00254-007-0672-3

    Article  ADS  CAS  Google Scholar 

  21. B. Panneerselvam, K. Muniraj, M. Thomas, N. Ravichandran, and B. Bidorn, Environ. Res. 202, 111778 (2021). https://doi.org/10.1016/j.envres.2021.111778

    Article  CAS  PubMed  Google Scholar 

  22. L. Wilcox, Classification and Use of Irrigation Waters (US Department of Agriculture, 1955), No. 969.

  23. M. Kavurmacı and C. B. Karakuş, Water, Air, Soil Pollut. 231, 1–17 (2020). https://doi.org/10.1007/s11270-020-4427-z

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Benouara Nawel made significant contributions to the design, analysis, data interpretation, programming, modeling, and manuscript writing; PhD Student Retima Nadjib contributed to the design, analysis, and data interpretation; Dr. Bouguerra Hamza played a role in the design, preparation of figures, and proofreading of the manuscript; Dr. Hab Tachi Salah Edine was involved in the design, programming, modeling, and contributed to manuscript writing and proofreading; Dr. Bouchahed Hamza participated in the design, preparation of figures, programming, and modeling; Dr. Remita Feriel made substantial contributions to the design.

Corresponding author

Correspondence to N. Benouara.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Competing Interests

I declare that the authors of this paper have no competing interests, as defined by Springer, or any other interests that could be perceived as exerting influence over the results and/or discussions presented in this research.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benouara, N., Retima, N., Bouguerra, H. et al. Evaluation of Groundwater Quality for Irrigation Purposes Using Water Quality Indices and GIS Technique: a Case Study of Seriana Plain Northeastern Algeria. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X23602596

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X23602596

Keywords:

Navigation