Skip to main content
Log in

“Sunlight” Vitamin D3—Multifaceted, Mysterious, Necessary

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The importance of vitamin D3 for maintaining the level of health in conditions of the acute respiratory and vascular infectious pathology of COVID-19 is considered. Physiological vitamin deficiency has been documented as a negative predictor of virus exposure and disease severity. A complex of clinical and experimental studies document that vitamin D3 performs the function of controlling hemovascular homeostasis—the endothelium of the vascular wall, a complex of immunological reactions, coagulation and rheological properties of blood, systemic hemodynamics, etc. The variety of effects is determined by the transcriptional role of the vitamin D3 receptor, which expresses gene targets for synthesis functional protective proteins. The possibilities of supplementation, maintaining the level of vitamin D3 and its chemical metabolites, for the preventive and therapeutic strategy of COVID-19 are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Adams, J.S., Ren, S., Liu, P.T., et al., Vitamin D-directed rheostatic regulation of monocyte antibacterial responses, J. Immunol., 2009, vol. 182, pp. 4289–4295. https://doi.org/10.4049/jimmunol.0803736

    Article  CAS  PubMed  Google Scholar 

  2. Argano, C., Bocchio, R.V., Natoli, G., et al., Protective effect of vitamin D supplementation on COVID-19-related intensive care hospitalization and mortality: definitive evidence from meta-analysis and trial sequential analysis, Pharmaceuticals (Basel), 2023, vol. 16, no. 1, p. 130. https://doi.org/10.3390/ph16010130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashique, S., Gupta, K., Gupta, G., et al., Vitamin D—a prominent immunomodulator to prevent COVID-19 infection, Int. J. Rheum. Dis., 2023, vol. 26, no. 1, pp. 13–30. https://doi.org/10.1111/1756-185X.14477

    Article  CAS  PubMed  Google Scholar 

  4. Baeke, F., Korf, H., Overbergh, L., et al., Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system, J. Steroid Biochem. Mol. Biol., 2010, vol. 121, nos. 1–2, pp. 221–227.

    Article  CAS  PubMed  Google Scholar 

  5. Barlow, P.G., Svoboda, P., Mackellar, A., et al., Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37, PLoS One, 2011, vol. 6, p. e25333. https://doi.org/10.1371/journal.pone.0025333

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barrea, L., Verde, L., Grant, W.B., et al., Vitamin D: A role also in long COVID-19?, Nutrients, 2022, vol. 14, no. 8, p. 1625. https://doi.org/10.3390/nu14081625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ben-Eltriki, M., Hopefl, R., Wright, J.M., et al., Association between vitamin D status and risk of developing severe COVID-19 infection: A meta-analysis of observational studies, J. Am. Nutr. Assoc., 2022, vol. 41, no. 7, pp. 679–689. https://doi.org/10.1080/07315724.2021.1951891

    Article  CAS  PubMed  Google Scholar 

  8. Bouillon, R., Vitamin D status in Africa is worse than in other continents, Lancet Global Health, 2020, vol. 8, pp. e20–e21.

    Article  PubMed  Google Scholar 

  9. Briceno Noriega, D. and Savelkoul, H.F.J., Vitamin D: A potential mitigation tool for the endemic stage of the COVID-19 pandemic?, Front. Publ. Health, 2022, vol. 10, p. 888168. https://doi.org/10.3389/fpubh.2022.888168

    Article  Google Scholar 

  10. Capozzi, A., Scambia, G., Lello, S., et al., Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health, Maturitas, 2020, vol. 140, pp. 55–63. https://doi.org/10.1016/j.maturitas.2020.05.020

    Article  CAS  PubMed  Google Scholar 

  11. Carlberg, C., Molecular endocrinology of vitamin D on the epigenome level, Mol. Cell. Endocrinol., 2017, vol. 453, pp. 14–21.

    Article  CAS  PubMed  Google Scholar 

  12. Castillo, M.E., Costa, L.M., Barrios, J.M., et al., Effect of calcifediol treatment and best available therapy versus best available therapy patients hospitalized for COVID-19: A pilot randomized clinical study, J. Steroid Biochem. Mol. Biol., 2020, vol. 203, p. 105751. https://doi.org/10.1016/j.jsbmb.2020.105751

    Article  CAS  Google Scholar 

  13. Chakkera, M., Ravi, N., Ramaraju, R., et al., The efficacy of vitamin D supplementation in patients with Alzheimer’s disease in preventing cognitive decline: A systematic review, Cureus, 2022, vol. 14, no. 11, p. e31710. https://doi.org/10.7759/cureus.31710

    Article  PubMed  PubMed Central  Google Scholar 

  14. Charoenngam, N., Jaroenlapnopparat, A., Mettler, S.K., et al., Genetic variations of the vitamin D metabolic pathway and COVID-19 susceptibility and severity: current understanding and existing evidence, Biomedicines, 2023, vol. 11, no. 2, p. 400. https://doi.org/10.3390/biomedicines11020400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiodini, I., Gatti, D.D., Soranna, D., et al., Vitamin D status and SARS-CoV-2 infection and COVID-19 clinical outcomes, Front. Publ. Health, 2021, vol. 9, p. 736665. https://doi.org/10.3389/fpubh.2021.736665

    Article  Google Scholar 

  16. Cicero, A.F.G., Fogacci, F., and Borghi, C., Vitamin D supplementation and COVID-19 outcomes: Mounting evidence and fewer doubts, Nutrients, 2022, vol. 14, no. 17, p. 3584. https://doi.org/10.3390/nu14173584

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dancer, R.C.A., Parekh, D., Lax, S., et al., Vitamin D deficiency contributes directly to the acute respiratory distress syndrome, Thorax, 2015, vol. 70, pp. 617–624.

    Article  PubMed  Google Scholar 

  18. Deluca, H.F., History of the discovery of vitamin D and its active metabolites, Bonekey Rep., 2014, vol. 3, p. 479. https://doi.org/10.1038/bonekey.2013.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Rosa, M., Malaguarnera, M., Nicoletti, F., et al., Vitamin D3: A helpful immune-modulator, Immunology, 2011, vol. 134, no. 2, pp. 123–139. https://doi.org/10.1111/j.1365-2567.2011.03482.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dissanayake, H.A., de Silva, N.L., Sumanatilleke, M., et al., Prognostic and therapeutic role of vitamin D in COVID-19: Systematic review and meta-analysis, J. Clin. Endocrinol. Metab., 2022, vol. 107, no. 5, pp. 1484–1502. https://doi.org/10.1210/clinem/dgab892

    Article  PubMed  Google Scholar 

  21. Durmuş, M.E., Kara, O., Kara, M., et al., The relationship between vitamin D deficiency and mortality in older adults before and during COVID-19, Heart Lung, 2023, vol. 57, pp. 117–123. https://doi.org/10.1016/j.hrtlng.2022.09.007

    Article  PubMed  Google Scholar 

  22. Gholi, Z., Yadegarynia, D., Eini-Zinab, H., et al., Vitamin D deficiency is associated with increased risk of delirium and mortality among critically ill, elderly Covid-19 patients, Complement. Therapies Med., 2022, vol. 70, p. 102855. https://doi.org/10.1016/j.ctim.2022.102855

    Article  Google Scholar 

  23. Gibson, C., Davis, C., Zhu, W., et al., Dietary vitamin D and its metabolites non-genomically stabilize the endothelium, PLoS One, 2015, vol. 10, p. e0140370. https://doi.org/10.1371/journal.pone.0140370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giménez, V.M., Sanz, R.L., Marón, F.J.M., et al., Vitamin D: RAAS connection: An integrative standpoint into cardiovascular and neuroinflammatory disorders, Curr. Protein Pept. Sci., 2020, vol. 21, pp. 948–954. https://doi.org/10.2174/1389203721666200606220719

    Article  CAS  PubMed  Google Scholar 

  25. Glinsky, G.V., Vitamin D, quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells, Biomedicines, 2020, vol. 8, no. 5, p. 129. https://doi.org/10.3390/biomedicines8050129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gomazkov, O.A., Endothelium—A Target Chosen by Coronavirus, Moscow: IKAR, 2021.

    Google Scholar 

  27. Gomazkov, O.A., Post-COVID syndrome. Pathophysiology of systemic dysregulations, Usp. Sovrem. Biol., 2023, vol. 143, no. 3, pp. 229–238.

    Google Scholar 

  28. Göring, H., Vitamin D in nature: A product of synthesis and/or degradation of cell membrane components, Biochemistry (Moscow), 2018, vol. 83, no. 11, pp. 1350–1357.

    PubMed  Google Scholar 

  29. Göring, H. and Koshuchowa, S., Vitamin D—The sun hormone. Life in environmental mismatch, Biochemistry (Moscow), 2015, vol. 80, no. 1, pp. 8–20.

    PubMed  Google Scholar 

  30. Han, L., Xu, X.J., Zhang, J.S., and Liu, H.M., Association between vitamin D deficiency and levels of renin and angiotensin in essential hypertension, Int. J. Clin. Pract., 2022, p. 8975396. https://doi.org/10.1155/2022/8975396

  31. Hansdottir, S., Monick, M.M., Lovanet, N., et al., Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state, J. Immunol., 2010, vol. 184, no. 2, pp. 965–974.

    Article  CAS  PubMed  Google Scholar 

  32. Holick, M.F., The one-hundred-year anniversary of the discovery of the sunshine vitamin D3: Historical, personal experience and evidence-based perspectives, Nutrients, 2023, vol. 15, no. 3, p. 593. https://doi.org/10.3390/nu15030593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hosseini, B., El Abd, A., and Ducharme, F., Effects of vitamin D supplementation on COVID-19 related outcomes: A systematic review and meta-analysis, Nutrients, 2022, vol. 14, p. 2134. https://doi.org/10.3390/nu14102134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ionova, Zh.I., Sergeeva, E.G., and Berkovich, O.A., Genetic and epigenetic factors regulating the expression and functioning of the vitamin D receptor in patients with ischemic heart disease, Ross. Kardiol. Zh., 2021, vol. 26, no. 1S, p. 425.

    Google Scholar 

  35. Jablonski, K.L., Chonchol, M., Pierce, G.L., et al., 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults, Hypertension, 2011, vol. 57, pp. 63–69.

    Article  CAS  PubMed  Google Scholar 

  36. Jenei, T., Jenei, S., Tamás, L.T., et al., COVID-19 mortality is associated with low vitamin D levels in patients with risk factors and/or advanced age, Clin. Nutr. ESPEN, 2022, vol. 47, pp. 410–413. https://doi.org/10.1016/j.clnesp.2021.11.025

    Article  PubMed  Google Scholar 

  37. Jude, E.B., Ling, S.F., Allcock, R., et al., Vitamin D deficiency is associated with higher hospitalization risk from COVID-19, J. Clin. Endocrinol. Metab., 2021, vol. 106, no. 11, pp. e4708–e4715. https://doi.org/10.1210/clinem/dgab439

    Article  PubMed  Google Scholar 

  38. Khojah, H.M.J., Ahmed, S.A., Al-Thagfan, S.S., et al., The impact of serum levels of vitamin D3 and its metabolites on the prognosis and disease severity of COVID-19, Nutrients, 2022, vol. 14, no. 24, p. 5329. https://doi.org/10.3390/nu14245329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kong, J., Zhu, X., Shi, Y., et al., VDR attenuates acute lung injury by blocking Ang-2–Tie-2 pathway and rennin-angiotensin system, Mol. Endocrinol., 2013, vol. 27, pp. 2116–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Y.C., Kong, J., Wei, M., et al., 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system, J. Clin. Invest., 2002, vol. 110, pp. 229–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin, L., Zhang, L., Li, Ch., et al., Vitamin D and vitamin D receptor: New insights in the treatment of hypertension, Curr. Protein Pept. Sci., 2019, vol. 20, no. 10, pp. 984–995. https://doi.org/10.2174/1389203720666190807130504

    Article  CAS  PubMed  Google Scholar 

  42. Lin, R. and White, J.H., The pleiotropic actions of vitamin D, BioEssays, 2004, vol. 26, pp. 21–28.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, P.T., Stenger, S., Li, H., et al., Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response, Science, 2006, vol. 311, pp. 1770–1773. https://doi.org/10.1126/science.1123933

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Malek Mahdavi, A., A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19, Rev. Med. Virol., 2020, vol. 30, no. 5, p. e2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCollum, E.V. and Davis, M., The necessity of certain lipins in the diet during growth, J. Biol. Chem., 1913, vol. 15, pp. 167–175.

    Article  CAS  Google Scholar 

  46. Oz, F., Cizgici, A.Y., Oflaz, H., et al., Impact of vitamin D insufficiency on the epicardial coronary flow velocity and endothelial function, Coron. Artery Dis., 2013, vol. 24, no. 5, pp. 392–397. https://doi.org/10.1097/MCA.0b013e328362b2c8

    Article  PubMed  Google Scholar 

  47. Pál, É., Ungvári, Z., Benyó, Z., and Várbíró, S., Role of vitamin D deficiency in the pathogenesis of cardiovascular and cerebrovascular diseases, Nutrients, 2023, vol. 15, no. 2, p. 334. https://doi.org/10.3390/nu15020334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pilz, S., Verheyen, N., Grübler, M.R., et al., Vitamin D and cardiovascular disease prevention, Nat. Rev. Cardiol., 2016, vol. 13, no. 7, pp. 404–417. https://doi.org/10.1038/nrcardio.2016.73

    Article  CAS  PubMed  Google Scholar 

  49. Quesada-Gomez, J.M., Lopez-Miranda, J., Entrenas-Castillo, M., et al., Vitamin D endocrine system and COVID-19: Treatment with calcifediol, Nutrients, 2022, vol. 14, no. 13, p. 2716. https://doi.org/10.3390/nu14132716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Renke, G., Starling-Soares, B., Thomaz Baesso, T., et al., Effects of vitamin D on cardiovascular risk and oxidative stress, Nutrients, 2023, vol. 15, no. 3, p. 769. https://doi.org/10.3390/nu15030769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salukhov, V.V. and Kovalevskaya, E.A., Vitamin D—A strategic strike against coronavirus infection, Med. Sovet, 2020, vol. 21, pp. 218–228. https://doi.org/10.21518/2079-701X-2020-21-218-228

    Article  Google Scholar 

  52. Shah, K., Varna, V.P., Sharma, U., et al., Does vitamin D supplementation reduce COVID-19 severity?: A systematic review, QJM, 2022, vol. 115, no. 10, pp. 665–672. https://doi.org/10.1093/qjmed/hcac040

    Article  CAS  PubMed  Google Scholar 

  53. Simpson, R.U., Hershey, S.H., and Nibbelink, K.A., Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse, J. Steroid. Biochem. Mol. Biol., 2007, vol. 103, pp. 521–524. https://doi.org/10.1016/j.jsbmb.2006.12.098

    Article  CAS  PubMed  Google Scholar 

  54. Soltani-Zangbar, M.S., Mahmoodpoor, A., Dolati, S., et al., Serum levels of vitamin D and immune system function in patients with COVID-19 admitted to intensive care unit, Gene Rep., 2022, vol. 26, p. 101509. https://doi.org/10.1016/j.genrep.2022.101509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang, J., COVID-19 Pandemic and osteoporosis in elderly patients, Aging Dis., 2022, vol. 13, pp. 960–969.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thickett, D.R., Moromizato, T., Litonjua, A.A., et al., Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study, BMJ Open Respiratory Res., 2015, vol. 2, pp. 1–8. https://doi.org/10.1136/bmjresp-2014-000074

    Article  Google Scholar 

  57. Tishkoff, D.X., Nibbelink, K.A., Holmberg, K.H., et al., Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility, Endocrinology, 2008, vol. 149, pp. 558–564.

    Article  CAS  PubMed  Google Scholar 

  58. White, J.H., Emerging roles of vitamin D-induced antimicrobial peptides in antiviral innate immunity, Nutrients, 2022, vol. 14, no. 2, p. 284. https://doi.org/10.3390/nu14020284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wong, M.S., Delansorne, R., Man, R.Y., et al., Vitamin D derivatives acutely reduce endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat, Am. J. Physiol.-Heart Circulat. Physiol., 2008, vol. 295, pp. H289–H296.

    Article  CAS  Google Scholar 

  60. Xu, Y., Baylink, D.J., Chen, C.-S., et al., The importance of vitamin D metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19, J. Transl. Med., 2020, vol. 18, no. 1, p. 322. https://doi.org/10.1186/s12967-020-02488-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Prof. V.V. Poroykov, corresponding member of the Russian Academy of Sciences, for his long-term cooperation and assistance with work on the present article.

Funding

This work was carried out in the framework of a long-term (2021–2030) Program for Basic Research in the Russian Federation no. 121102900156-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gomazkov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomazkov, O.A. “Sunlight” Vitamin D3—Multifaceted, Mysterious, Necessary. Biol Bull Rev 13 (Suppl 3), S254–S263 (2023). https://doi.org/10.1134/S2079086423090049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423090049

Keywords:

Navigation