Skip to main content
Log in

Perfect mixed codes from generalized Reed–Muller codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we propose a new method for constructing 1-perfect mixed codes in the Cartesian product \(\mathbb {F}_{n} \times \mathbb {F}_{q}^n\), where \(\mathbb {F}_{n}\) and \(\mathbb {F}_{q}\) are finite fields of orders \(n = q^m\) and q. We consider generalized Reed-Muller codes of length \(n = q^m\) and order \((q - 1)m - 2\). Codes whose parameters are the same as the parameters of generalized Reed-Muller codes are called Reed-Muller-like codes. The construction we propose is based on partitions of distance-2 MDS codes into Reed-Muller-like codes of order \((q - 1)m - 2\). We construct a set of \(q^{q^{cn}}\) nonequivalent 1-perfect mixed codes in the Cartesian product \(\mathbb {F}_{n} \times \mathbb {F}_{q}^{n}\), where the constant c satisfies \(c < 1\), \(n = q^m\) and m is a sufficiently large positive integer. We also prove that each 1-perfect mixed code in the Cartesian product \(\mathbb {F}_{n} \times \mathbb {F}_{q}^n\) corresponds to a certain partition of a distance-2 MDS code into Reed-Muller-like codes of order \((q - 1)m - 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alderson T.L.: (6,3)-MDS codes over an alphabet of size 4. Des. Codes Cryptogr. 38(1), 31–40 (2006). https://doi.org/10.1007/s10623-004-5659-4.

    Article  MathSciNet  Google Scholar 

  2. Assmus E.F., Key J.D.: Polynomial codes and finite geometries. In: Pless V.S., Huffman W.C., Brualdi R.A. (eds.) Handbook of Coding Theory, vol. II, pp. 1269–1344. Elsevier, Amsterdam (1998).

    Google Scholar 

  3. Delsarte P.: Bounds for unrestricted codes, by linear programming. Philips Res. Rep. 27, 272–289 (1972).

    MathSciNet  Google Scholar 

  4. Delsarte P., Goethals J.M., MacWilliams F.J.: On generalized Reed-Muller codes and their relatives. Inform. Contr. 16, 403–442 (1970).

    Article  MathSciNet  Google Scholar 

  5. Delsarte P., Goethals J.M.: Unrestricted codes with the Golay parameters are unique. Discret. Math. 12, 211–224 (1975).

    Article  MathSciNet  Google Scholar 

  6. Etzion T., Greenberg G.: Constructions for perfect mixed codes and other covering codes. IEEE Trans. Inform. Theory. 39(1), 209–214 (1993).

    Article  MathSciNet  Google Scholar 

  7. Heden O.: A new construction of group and nongroup perfect codes. Inform. Control 34(4), 314–323 (1977). https://doi.org/10.1016/S0019-9958(77)90372-2.

    Article  MathSciNet  Google Scholar 

  8. Heden O.: On perfect \(p\)-ary codes of length \(p + 1\). Des. Codes Cryptogr. 46, 45–56 (2008).

    Article  MathSciNet  Google Scholar 

  9. Heden O., Krotov D.S.: On the structure of non-full-rank perfect \(q\)-ary codes. Adv. Math. Commun. 5(2), 149–156 (2011).

    Article  MathSciNet  Google Scholar 

  10. Herzog M., Schönheim J.: Linear and nonlinear single-error-correcting perfect mixed codes. Inform. Control 18(4), 364–368 (1971).

    Article  MathSciNet  Google Scholar 

  11. Herzog M., Schönheim J.: Group partition, factorization and the vector covering problem. Canad. Math. Bull. 15(2), 207–214 (1972).

    Article  MathSciNet  Google Scholar 

  12. Kasami T., Lin S., Peterson W.W.: New generalizations of the Reed–Muller codes. Part I: primitive codes. IEEE Trans. Inform. Theory 14, 189–199 (1968). https://doi.org/10.1109/TIT.1968.1054127.

    Article  MathSciNet  Google Scholar 

  13. Kokkala J.I., Krotov D.S., Östergård P.R.J.: On the classification of MDS codes. IEEE Trans. Inform. Theory 61(12), 6485–6492 (2015). https://doi.org/10.1109/TIT.2015.2488659.

    Article  MathSciNet  Google Scholar 

  14. Laywine C.F., Mullen G.L.: Discrete mathematics using Latin squares. Wiley, New York (1998).

    Google Scholar 

  15. Lindström B.: On group and nongroup perfect codes in \(q\) symbols. Math. Scand. 25(2), 149–158 (1969).

    Article  MathSciNet  Google Scholar 

  16. Liu C.L., Ong B.G., Ruth G.R.: A construction scheme for linear and non-linear codes. Discret. Math. 4(2), 171–184 (1973). https://doi.org/10.1016/0012-365X(73)90080-0.

    Article  MathSciNet  Google Scholar 

  17. MacWilliams F.J., Sloane N.J.A.: The theory of error-correcting codes. North-Holland Publishing Co., Amsterdam (1977).

    Google Scholar 

  18. Östergård P.R.J., Pottonen O.: The perfect binary one-error-correcting codes of length 15: part I-classification. IEEE Trans. Inform. Theory 55, 4657–4660 (2009).

    Article  MathSciNet  Google Scholar 

  19. Östergård P.R.J., Pottonen O., Phelps K.T.: The perfect binary one-error-correcting codes of length 15: part II-properties. IEEE Trans. Inform. Theory 56, 2571–2582 (2010).

    Article  MathSciNet  Google Scholar 

  20. Pasticci F., Westerback T.: On rank and kernel of some mixed perfect codes. Discret. Math. 309(9), 2763–2774 (2009). https://doi.org/10.1016/j.disc.2008.06.037.

    Article  MathSciNet  Google Scholar 

  21. Phelps K.T.: A general product construction for error correcting codes. SIAM J. Alg. Disc. Meth. 5(2), 224–228 (1984). https://doi.org/10.1137/0605023.

    Article  MathSciNet  Google Scholar 

  22. Phelps K.T.: An enumeration of 1-perfect binary codes. Australas. J. Combin. 21, 287–298 (2000).

    MathSciNet  Google Scholar 

  23. Romanov A.M.: Hamiltonicity of minimum distance graphs of 1-perfect codes. Electron. J. Combin. 19(1), #P65 (2012). https://doi.org/10.37236/2158.

    Article  MathSciNet  Google Scholar 

  24. Romanov A.M.: On non-full-rank perfect codes over finite fields. Des. Codes Cryptogr. 87(5), 995–1003 (2019). https://doi.org/10.1007/s10623-018-0506-1.

    Article  MathSciNet  Google Scholar 

  25. Romanov A.M.: On perfect and Reed–Muller codes over finite fields. Probl. Inf. Transm. 57, 199–211 (2021). https://doi.org/10.1134/S0032946021030017.

    Article  MathSciNet  Google Scholar 

  26. Romanov A.M.: On the number of q-ary quasi-perfect codes with covering radius 2. Des. Codes Cryptogr. 90, 1713–1719 (2022). https://doi.org/10.1007/s10623-022-01070-y.

    Article  MathSciNet  Google Scholar 

  27. Schönheim J.: On linear and nonlinear single-error-correcting \(q\)-nary perfect codes. Inform. Control 12(1), 23–26 (1968).

    Article  MathSciNet  Google Scholar 

  28. Schönheim J.: Mixed codes. Proceedings of the Calgary Int. Conf. of Combinatorial Structures and their Application. Gordon and Breach, New York (1970)

  29. Shi M., Krotov D.S.: An enumeration of 1-perfect ternary codes. Discret. Math. 346(7), 113437 (2023). https://doi.org/10.1016/j.disc.2023.113437.

    Article  MathSciNet  Google Scholar 

  30. Solov’eva F.I.: On binary nongroup codes. Methody Discretnogo Analiza 37, 65–76 (1981) (in Russian).

    MathSciNet  Google Scholar 

  31. Taussky O., Todd J.: Covering theorems for groups. Ann. Soc. Polon. Math. 21, 303–305 (1948).

    MathSciNet  Google Scholar 

  32. Tietäväinen A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24(1), 88–96 (1973).

    Article  MathSciNet  Google Scholar 

  33. van Wee G.J.M.: On the non-existence of certain perfect mixed codes. Discret. math. 87(3), 323–326 (1991). https://doi.org/10.1016/0012-365X(91)90143-P.

    Article  Google Scholar 

  34. Vasil’ev Yu.L.: On nongroup close-packed codes. Probl. Kybern. 8, 337–339 (1962).

    Google Scholar 

  35. Zaremba S.K.: Covering problems concerning Abelian groups. J. London Math. Soc. 27, 242–246 (1952). https://doi.org/10.1112/jlms/s1-27.2.242.

    Article  MathSciNet  Google Scholar 

  36. Zinoviev V.A., Leontiev V.K.: On Non-existence of perfect codes over Galois fields. Probl. Control Inf. Theory 2(2), 123–132 (1973).

    MathSciNet  Google Scholar 

  37. Zinoviev V.A.: Generalized concatenated codes. Probl. Inf. Transm. 12(1), 2–9 (1976).

    Google Scholar 

  38. Zinoviev V.A., Zinoviev D.V.: Binary extended perfect codes of length 16 obtained by the generalized concatenated construction. Probl. Inf. Transm. 38, 296–322 (2002).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Romanov.

Additional information

Communicated by V. A. Zinoviev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF-2022-0018).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, A.M. Perfect mixed codes from generalized Reed–Muller codes. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01364-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01364-3

Keywords

Mathematics Subject Classification

Navigation