Skip to main content
Log in

A 12.5 Gb/s 1.38 mW all-inverter-based optical receiver with multi-stage feedback TIA and continuous-time linear equalizer

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An optical receiver employs an all-inverter-based front-end design that provides maximum transconductance for a given power supply and allows for ultra-low power consumption. The feedback transimpedance amplifier (TIA) input stage utilizes a multi-stage amplifier to achieve a dramatic increase in feedback resistance and lower input-referred noise. Cascading an inverter-based active inductor continuous-time linear equalizer provides frequency peaking to compensate the input stage TIA that is intentionally designed with a reduced bandwidth to achieve adequate sensitivity at low power. Fabricated in 28 nm CMOS, the 12.5 Gb/s optical receiver achieves \(-\)10.7 dBm OMA sensitivity at 0.11 pJ/bit energy efficiency and occupies only 720 \(\upmu \text {m}^{2}\) area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility Statement

The authors declare that the data supporting the findings obtained during this research work is available within the paper.

References

  1. Liu, F. Y., Patil, D., Lexau, J., Amberg, P., Dayringer, M., Gainsley, J., Moghadam, H. F., Zheng, X., Cunningham, J. E., Krishnamoorthy, A. V., Alon, E., & Ho, R. (2012). 10-Gbps, 5.3-mW Optical Transmitter and Receiver Circuits in 40-nm CMOS. IEEE Journal of Solid-State Circuits, 47(9), 2049–2067. https://doi.org/10.1109/JSSC.2012.2197234

    Article  Google Scholar 

  2. Sackinger, E. (2005). Broadband circuits for optical fiber communication. New York: Wiley.

    Book  Google Scholar 

  3. Säckinger, E. (2010). The Transimpedance Limit. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1848–1856. https://doi.org/10.1109/TCSI.2009.2037847

    Article  MathSciNet  Google Scholar 

  4. Sharif-Bakhtiar, A., Lee, M. G., & Carusone, A. C. (2017). Low-power CMOS receivers for short reach optical communication. In 2017 IEEE custom integrated circuits conference (CICC), (pp. 1–8). https://doi.org/10.1109/CICC.2017.7993601

  5. Ahmed, M. G., Talegaonkar, M., Elkholy, A., Shu, G., Elmallah, A., Rylyakov, A., & Hanumolu, P. K. (2018). A 12-Gb/s -16.8-dBm OMA Sensitivity 23-mW Optical Receiver in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 53(2), 445–457. https://doi.org/10.1109/JSSC.2017.2757008

    Article  Google Scholar 

  6. Ahmed, M. G., Kim, D., Nandwana, R. K., Elkholy, A., Lakshmikumar, K. R., & Hanumolu, P. K. (2021). A 16-Gb/s -11.6-dBm OMA sensitivity 0.7-pJ/bit optical receiver in 65-nm CMOS enabled by duobinary sampling. IEEE Journal of Solid-State Circuits, 56(9), 2795–2803. https://doi.org/10.1109/JSSC.2021.3064248

    Article  Google Scholar 

  7. Li, D., Minoia, G., Repossi, M., Baldi, D., Temporiti, E., Mazzanti, A., & Svelto, F. (2014). A low-noise design technique for high-speed CMOS optical receivers. IEEE Journal of Solid-State Circuits, 49(6), 1437–1447. https://doi.org/10.1109/JSSC.2014.2322868

    Article  Google Scholar 

  8. Li, D., Geng, L., Maloberti, F., & Svelto, F. (2022). Overcoming the transimpedance limit: a tutorial on design of low-noise TIA. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(6), 2648–2653. https://doi.org/10.1109/TCSII.2022.3173155

    Article  Google Scholar 

  9. Li, D., Liu, M., Gao, S., Shi, Y., Zhang, Y., Li, Z., Chiang, P. Y., Maloberti, F., & Geng, L. (2019). Low-noise broadband CMOS TIA based on multi-stage stagger-tuned amplifier for high-speed high-sensitivity optical communication. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(10), 3676–3689. https://doi.org/10.1109/TCSI.2019.2916150

    Article  Google Scholar 

  10. Yan, P., Hong, C., Chang, P.-H., Kang, H., Annabattuni, D., Kumar, A., Fan, Y.-H., Liu, R., Rady, R., & Palermo, S. (2022). A 12.5 Gb/s 1.38 mW Inverter-Based Optical Receiver in 28 nm CMOS. In 2022 IEEE 65th international midwest symposium on circuits and systems (MWSCAS) (pp. 1–4). https://doi.org/10.1109/MWSCAS54063.2022.9859536

  11. Zheng, K., Frans, Y., Chang, K., & Murmann, B. (2018). A 56 Gb/s 6 mW 300 um2 inverter-based CTLE for short-reach PAM2 applications in 16 nm CMOS. In 2018 IEEE custom integrated circuits conference (CICC) (pp. 1–4). https://doi.org/10.1109/CICC.2018.8357076

  12. Zheng, K., Frans, Y., Ambatipudi, S. L., Asuncion, S., Reddy, H. T., Chang, K., & Murmann, B. (2018). An inverter-based analog front-end for a 56-Gb/s PAM-4 wireline transceiver in 16-nm CMOS. IEEE Solid-State Circuits Letters, 1(12), 249–252. https://doi.org/10.1109/LSSC.2019.2894933

    Article  Google Scholar 

  13. Musah, T., Jaussi, J. E., Balamurugan, G., Hyvonen, S., Hsueh, T.-C., Keskin, G., Shekhar, S., Kennedy, J., Sen, S., Inti, R., Mansuri, M., Leddige, M., Horine, B., Roberts, C., Mooney, R., & Casper, B. (2014). A 4–32 Gb/s bidirectional link with 3-Tap FFE/6-Tap DFE and collaborative CDR in 22 nm CMOS. IEEE Journal of Solid-State Circuits, 49(12), 3079–3090. https://doi.org/10.1109/JSSC.2014.2348556

    Article  Google Scholar 

  14. Schinkel, D., Mensink, E., Klumperink, E., van Tuijl, E., & Nauta, B. (2007). A double-tail latch-type voltage sense amplifier with 18ps setup+hold time. In 2007 IEEE international solid-state circuits conference. Digest of technical papers (pp. 314–605). https://doi.org/10.1109/ISSCC.2007.373420

Download references

Funding

This research was funded by the DARPA PIPES program.

Author information

Authors and Affiliations

Authors

Contributions

PY designed the circuit and wrote the first draft of the manuscript. CH did test preparation and data collection. P-HC, HK, DA, AK, Y-HF, RL and RR contributed to the chip layout. SP gave advice during design procedure and commented on previous versions. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Peng Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Hong, C., Chang, PH. et al. A 12.5 Gb/s 1.38 mW all-inverter-based optical receiver with multi-stage feedback TIA and continuous-time linear equalizer. Analog Integr Circ Sig Process 119, 283–296 (2024). https://doi.org/10.1007/s10470-024-02248-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-024-02248-1

Keywords

Navigation