Skip to main content
Log in

Effect of low-cost mussel-inspired poly(catechol/polyamine) modification of waste brick powder followed by grafting of epoxy elastomers on natural rubber composites

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aim of this study is to explore a method for modifying waste brick powder (WBP) in order to reapply it to rubber products for effective resource recycling. Firstly, we use the auto polymerization of catechol/polyamine (CPA) on the surface of WBP to form a poly catechol/polyamine (PCPA) coating as an intermediate reaction platform. And then the macromolecular modifier, epoxy-functionalized elastomer (ethylene vinyl acetate-glycidyl methacrylate terpolymer) (EVMG), is further grafted onto the PCPA coating to prepare the WBP@EVMG hybrid materials. During the preparation of the WBP@EVMG hybrid materials, a ring-opening reaction between the amine group of PCPA and the epoxy group of EVMG occurs. The NR/WBP@EVMG composites are prepared by mechanical blending. The interfacial interactions between WBP@EVMG and NR are analyzed and verified in detail by dynamic mechanical analysis (DMA) and rubber process analyzer (RPA). It is shown that the modified NR/WBP composites show increased vulcanization rate and better mechanical properties, and the tensile strength, abrasion resistance, cracking strength, and wet slip resistance of NR/WBP@EVMG-15 are increased by 29%, 6%, 16%, and 11%, respectively, compared with that of NR/WBP composites, which provides a unique idea for the reuse of waste brick powder in rubber.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within this article.

References

  1. Ma Z, Tang Q, Wu H, Xu J, Liang C (2020) Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C and D waste. Cement Concr Compos 114:103758

    Article  CAS  Google Scholar 

  2. Sudharsan N, Sivalingam K (2019) Potential utilization of waste material for sustainable development in construction industry. Int J Recent Technol Eng 8(3):3435–3438

    Google Scholar 

  3. Shi G, Shen Y, Mu P, Wang Q, Yang Y, Ma S, Li J (2020) Effective separation of surfactant-stabilized crude oil-in-water emulsions by using waste brick powder-coated membranes under corrosive conditions. Green Chem 22(4):1345–1352

    Article  CAS  Google Scholar 

  4. Wu JD, Guo LP, Qin YY (2021) Preparation and characterization of ultra-high-strength and ultra-high-ductility cementitious composites incorporating waste clay brick powder. J Clean Prod 312:127813

    Article  Google Scholar 

  5. Sinkhonde D (2023) A contribution to debate on surface roughness of clay brick powder generated using varying milling treatments. Results Eng 19:101236

    Article  Google Scholar 

  6. Guo X, Chen X, Li Y, Li Z, Guo W (2019) Using sustainable oil shale waste powder treated with silane coupling agent for enriching the performance of asphalt and asphalt mixture. Sustainability 11(18):4857

    Article  CAS  Google Scholar 

  7. Ran W, Zhu H, Shen X, Zhang Y (2022) Rheological properties of asphalt mortar with silane coupling agent modified oil sludge pyrolysis residue. Constr Build Mater 329:127057

    Article  CAS  Google Scholar 

  8. Cheng H (2016) Reuse research progress on waste clay brick. Procedia Environ Sci 31:218–226

    Article  Google Scholar 

  9. Hosseini SM, Razzaghi-Kashani M (2014) Vulcanization kinetics of nano-silica filled styrene butadiene rubber. Polymer 55(24):6426–6434

    Article  CAS  Google Scholar 

  10. Tang D, Zhang X, Hu S, Liu X, Ren X, Hu J, Feng Y (2020) The reuse of red brick powder as a filler in styrene-butadiene rubber. J Clean Prod 261:120966

    Article  CAS  Google Scholar 

  11. Bakošová D, Bakošová A (2022) Testing of rubber composites reinforced with carbon nanotubes. Polymers 14(15):3039

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang H, Zhao M, Han L, Chen H, Li Q, Borah J, Lin G (2023) Effect of epoxy functionalized elastomer modified carbon fiber on mechanical properties and interfacial adhesion of chloroprene rubber (CR)/natural rubber (NR) composites. J Appl Polym Sci 140(38):e54426

    Article  CAS  Google Scholar 

  13. Chen Z, Wang W, Li J, Lin J, Li F, Zhang L, He S (2023) Bioinspired design of nitrile-butadiene rubber/montmorillonite nanocomposites with hydrogen bond interactions leading to highly effective reinforcement. Polymer 277:125968

    Article  CAS  Google Scholar 

  14. Bi W, Goegelein C, Hoch M, Kirchhoff J, Zhao S (2022) Effect of silane coupling agents on the rheology, dynamic and mechanical properties of ethylene propylene diene rubber/calcium carbonate composites. Polymers 14(16):3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sowińska-Baranowska A, Maciejewska M, Duda P (2022) The potential application of starch and walnut shells as biofillers for natural rubber (NR) composites. Int J Mol Sci 23(14):7968

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Q, Lu Y, Shao Z (2023) Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber. Int J Miner Metallur Mater 30(3):548–558

    Article  CAS  Google Scholar 

  17. Kazemi H, Parot M, Stevanovic T, Mighri F, Rodrigue D (2022) Cellulose and lignin as carbon black replacement in natural rubber. J Appl Polym Sci 139(26):e52462

    Article  CAS  Google Scholar 

  18. Shafik ES, Tharwat C, Abd-El-Messieh SL (2023) Utilization study on red brick waste as novel reinforcing and economical filler for acrylonitrile butadiene rubber composite. Clean Technol Environ Policy 25(5):1605–1615

    Article  CAS  Google Scholar 

  19. Hao M, Zhao W, Li R, Zou H, Tian M, Zhang L, Wang W (2018) Surface modification of as-prepared silver-coated silica microspheres through mussel-inspired functionalization and its application properties in silicone rubber. Ind Eng Chem Res 57(22):7486–7494

    Article  CAS  Google Scholar 

  20. Fang Z, Tu Q, Shen X, Yang X, Liang K, Pan M, Chen Z (2022) Biomimetic surface modification of UHMWPE fibers to enhance interfacial adhesion with rubber matrix via constructing polydopamine functionalization platform and then depositing zinc oxide nanoparticles. Surf Interf 29:101728

    Article  CAS  Google Scholar 

  21. Wei Q, Zhang F, Li J, Li B, Zhao C (2010) Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem 1(9):1430–1433

    Article  CAS  Google Scholar 

  22. Sa R, Yan Y, Wei Z, Zhang L, Wang W, Tian M (2014) Surface modification of aramid fibers by bio-inspired poly (dopamine) and epoxy functionalized silane grafting. ACS Appl Mater Interfaces 6(23):21730–21738

    Article  CAS  PubMed  Google Scholar 

  23. Bourmaud A, Riviere J, Le Duigou A, Raj G, Baley C (2009) Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polym Testing 28(6):668–672

    Article  CAS  Google Scholar 

  24. Liao Y, Cao B, Wang WC, Zhang L, Wu D, Jin R (2009) A facile method for preparing highly conductive and reflective surface-silvered polyimide films. Appl Surf Sci 255(19):8207–8212

    Article  CAS  Google Scholar 

  25. Bernsmann F, Ponche A, Ringwald C, Hemmerle J, Raya J, Bechinger B, Ball V (2009) Characterization of dopamine− melanin growth on silicon oxide. J Phys Chem C 113(19):8234–8242

    Article  CAS  Google Scholar 

  26. Yang D, Ni Y, Liang Y, Li B, Ma H, Zhang L (2019) Improved thermal conductivity and electromechanical properties of natural rubber by constructing Al2O3-PDA-Ag hybrid nanoparticles. Compos Sci Technol 180:86–93

    Article  CAS  Google Scholar 

  27. Wang H, Wu J, Cai C, Guo J, Fan H, Zhu C, Xu J (2014) Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. ACS Appl Mater Interfaces 6(8):5602–5608

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Shi Y, Sa R, Ning N, Wang W, Tian M, Zhang L (2016) Surface modification of aramid fibers by catechol/polyamine codeposition followed by silane grafting for enhanced interfacial adhesion to rubber matrix. Ind Eng Chem Res 55(49):12547–12556

    Article  CAS  Google Scholar 

  29. Wang L, Shi Y, Chen S, Wang W, Tian M, Ning N, Zhang L (2017) Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chem Eng J 314:583–593

    Article  CAS  Google Scholar 

  30. Yang D, Yu L, Ai J, Wei Q, Ni Y, Zhang L (2021) Enhanced thermal conductivity of carboxyl nitrile butadiene rubber composites with low-cost poly (catechol/polyamine) modified Al2O3 via biomimetic method. Compos Commun 23:100565

    Article  Google Scholar 

  31. Sa R, Wei Z, Yan Y, Wang L, Wang W, Zhang L, Tian M (2015) Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion. Compos Sci Technol 113:54–62

    Article  CAS  Google Scholar 

  32. Yang D, Ni Y, Kong X, Wang Y, Zhang L (2019) A mussel-like inspired modification of BaTiO3 nanopartciles using catechol/polyamine co-deposition and silane grafting for high-performance dielectric elastomer composites. Compos B Eng 172:621–627

    Article  CAS  Google Scholar 

  33. Tang W, Chen C, Sun W, Wang P, Wei D (2019) Low-cost mussel inspired poly (Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme. Int J Biol Macromol 128:814–824

    Article  CAS  PubMed  Google Scholar 

  34. Li Q, Lin G, Zhang S, Zhang L, Geng C, Borah J (2022) Enhanced mechanical properties and interfacial interaction of ESBR composites by introducing silica decorated with epoxy functionalized elastomer. Polym Testing 112:107632

    Article  CAS  Google Scholar 

  35. Zhang S, Han L, Bai H, Li C, Wang X, Yang Z, Li Y (2021) Introducing mechanochemistry into rubber processing: green-functionalized cross-linking network of butadiene elastomer. ACS Sustainable Chemistry and Engineering 9(24):8053–8058

    Article  CAS  Google Scholar 

  36. Zhang G, Feng H, Liang K, Wang Z, Li X, Zhou X, Zhang L (2020) Design of next-generation cross-linking structure for elastomers toward green process and a real recycling loop. Sci Bullet 65(11):889–898

    Article  CAS  Google Scholar 

  37. Cao Y, Xu P, Wu B, Hoch M, Lemstra PJ, Yang W, Ma P (2020) High-performance and functional PBT/EVMG/CNTs nanocomposites from recycled sources by in situ multistep reaction-induced interfacial control. Compos Sci Technol 190:108043

    Article  CAS  Google Scholar 

  38. Tissington B, Pollard G, Ward IM (1992) A study of the effects of oxygen plasma treatment on the adhesion behaviour of polyethylene fibres. Compos Sci Technol 44(3):185–195

    Article  CAS  Google Scholar 

  39. Yang C, Tartaglino U, Perssonn BNJ (2006) Influence of surface roughness on superhydrophobicity. Phys Rev Lett 97(11):116103

    Article  CAS  PubMed  Google Scholar 

  40. Kugler F, Fehn T, Sandner M, Krcmar W, Teipel U (2022) Microstructural and mechanical properties of geopolymers based on brick scrap and fly ash. Int J Ceram Eng Sci 4(2):92–101

    Article  CAS  Google Scholar 

  41. Yu L, Yang D (2022) Enhanced electromechanical properties of natural rubber via the synergistic effect of poly (catechol/polyamine) modification and Ag deposition on TiO2 nanoparticles. Compos B Eng 239:109993

    Article  CAS  Google Scholar 

  42. Ju-tao S, Jia-jia S, Ping Z (2013) Effects of the interaction of hardness, resilience, and fatigue properties on the abrasion properties of rubber blends. J Appl Polym Sci 130(2):1212–1219

    Article  Google Scholar 

  43. Bashir MA (2021) Use of dynamic mechanical analysis (DMA) for characterizing interfacial interactions in filled polymers. Solids 2(1):108–120

    Article  CAS  Google Scholar 

  44. Chen Z, Tu Q, Shen X, Fang Z, Bi S, Yin Q, Zhang X (2023) Enhancing the thermal and mechanical properties of carbon fiber/natural rubber composites by co-modification of dopamine and silane coupling agents. Polym Testing 126:108164

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Research and Development Plan of Shandong Province (Major Scientific and Technological Innovation Project, 2020CXGC010312).

Author information

Authors and Affiliations

Authors

Contributions

M Z: writing – original draft; writing – review and editing. H D: Investigation. S Z: Investigation. L H: Investigation. K P: Investigation. Y J: Investigation. G L: Data curation.

Corresponding author

Correspondence to Guangyi Lin.

Ethics declarations

Ethical approval

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Duan, H., Zhang, S. et al. Effect of low-cost mussel-inspired poly(catechol/polyamine) modification of waste brick powder followed by grafting of epoxy elastomers on natural rubber composites. Colloid Polym Sci 302, 735–744 (2024). https://doi.org/10.1007/s00396-024-05225-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-024-05225-2

Keywords

Navigation