Skip to main content
Log in

Several constructions of optimal LCD codes over small finite fields

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Linear complementary dual (LCD) codes are linear codes which intersect their dual codes trivially, which have been of interest and extensively studied due to their practical applications in computational complexity and information protection. In this paper, we give some methods for constructing LCD codes over small finite fields by modifying some typical methods for constructing linear codes. We show that all odd-like binary Euclidean LCD codes, ternary Euclidean LCD codes and quaternary Hermitian LCD codes can be constructed using the modified methods. Our results improve the known lower bounds on the largest minimum distances of LCD codes. Furthermore, we give two counterexamples to disprove the conjecture proposed by Bouyuklieva (Des. Codes Cryptogr. 89(11), 2445–2461 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of supporting data

The data that support the findings of this study are openly available at https://ahu-coding.github.io/code1/.

References

  1. Araya, M., Harada, M.: On the classification of linear complementary dual codes. Discrete Math. 342(1), 270–278 (2019)

    Article  MathSciNet  Google Scholar 

  2. Araya, M., Harada, M.: On the classification of quaternary optimal Hermitian LCD codes. Cryptogr. Commun. 14(4), 833–847 (2022)

    Article  MathSciNet  Google Scholar 

  3. Araya, M., Harada, M.: On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 12(2), 285–300 (2020)

    Article  MathSciNet  Google Scholar 

  4. Araya, M., Harada, M., Saito, K.: Characterization and classification of optimal LCD codes. Des. Codes Cryptogr. 89, 617–640 (2021)

    Article  MathSciNet  Google Scholar 

  5. Araya, M., Harada, M., Saito, K.: On the minimum weights of binary LCD codes and ternary LCD codes. Finite Fields Appl. 76, 101925 (2021)

    Article  MathSciNet  Google Scholar 

  6. Araya, M., Harada, M., Saito, K.: Quaternary Hermitian linear complementary dual codes. IEEE Trans. Inf. Theory 66, 2751–2759 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  8. Bouyuklieva, S.: Optimal binary LCD codes. Des. Codes Cryptogr. 89(11), 2445–2461 (2021)

    Article  MathSciNet  Google Scholar 

  9. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5789), 436–439 (2006)

    Article  MathSciNet  PubMed  ADS  CAS  Google Scholar 

  10. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)

    Article  MathSciNet  Google Scholar 

  11. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65(1), 39–49 (2019)

    Article  MathSciNet  Google Scholar 

  12. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: On \(\sigma \)-LCD codes. IEEE Trans. Inf. Theory 65(3), 1694–1704 (2019)

    Article  MathSciNet  Google Scholar 

  13. Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb{F}_q\) are equivalent to LCD codes for \(q > 3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)

    Article  Google Scholar 

  14. Dougherty, S.T., Kim, J., Özkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: Linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2–3), 116–128 (2017)

    MathSciNet  Google Scholar 

  15. Fu, Q., Li, R., Fu, F., Rao, Y.: On the construction of binary optimal LCD codes with short length. Int. J. Found. Comput. Sci. 30, 1237–1245 (2019)

    Article  MathSciNet  Google Scholar 

  16. Galvez, L., Kim, J.-L., Lee, N., Roe, Y.G., Won, B.S.: Some bounds on binary LCD codes. Cryptogr. Commun. 10(4), 719–728 (2018)

    Article  MathSciNet  Google Scholar 

  17. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes, http://www.codetables.de (2022). Accessed 4 March 2022

  18. Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016)

    Article  MathSciNet  Google Scholar 

  19. Harada, M.: Construction of binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes. Des. Codes Cryptogr. 89(10), 2295–2312 (2021)

    Article  MathSciNet  Google Scholar 

  20. Harada, M.: Existence of new extremal doubly-even codes and extremal singly-even codes. Des. Codes Cryptogr. 8(3), 273–283 (1996)

    Article  MathSciNet  Google Scholar 

  21. Harada, M.: Some optimal entanglement-assisted quantum codes constructed from quaternary Hermitian linear complementary dual codes. Int. J. Quantum Inf. 17, 1950053 (2019)

    Article  MathSciNet  Google Scholar 

  22. Harada, M., Saito, K.: Binary linear complementary dual codes. Cryptogr. Commun. 11(4), 677–696 (2019)

    Article  MathSciNet  Google Scholar 

  23. Harada, M., Saito, K.: Remark on subcodes of linear complementary dual codes, Inform. Process. Lett. 159(160), 105963 (2020)

    Article  MathSciNet  Google Scholar 

  24. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes, Cambridge University Press, (2003)

  25. Ishizuka, K., Saito, K.: Construction for both self-dual codes and LCD codes. Adv. Math. Commun. 17(1), 139–151 (2023)

    Article  MathSciNet  Google Scholar 

  26. Kim, J.-L.: New extremal self-dual codes of lengths 36, 38 and 58. IEEE Trans. Inf. Theory 47(1), 386–393 (2001)

    Article  MathSciNet  Google Scholar 

  27. Kim, J.-L.: New self-dual codes over \(GF(4)\) with the highest known minimum weights. IEEE Trans. Inf. Theory 47(4), 1575–1580 (2001)

    Article  MathSciNet  Google Scholar 

  28. Kim, J.-L., Lee, Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 105(1), 79–95 (2004)

    Article  MathSciNet  Google Scholar 

  29. Koroglu, M.E., Sari, M.: On MDS negacyclic LCD codes. Filomat 33(1), 1–12 (2019)

    Article  MathSciNet  Google Scholar 

  30. Lai, C., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018)

    Article  MathSciNet  Google Scholar 

  31. Li, Y., Su, Y., Zhu, S., Li, S., Shi, M.: Several classes of Galois self-orthogonal MDS codes and related applications. Finite Fields Appl. 91, 102267 (2023)

    Article  MathSciNet  Google Scholar 

  32. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  33. Lu, L., Zhan, X., Yang, S., Cao, H.: Optimal quaternary Hermitian LCD codes, (2020). https://arxiv.org/pdf/2010.10166.pdf

  34. Massey, J.: Linear codes with complementary duals. Discrete Math. 106–107, 337–342 (1992)

    Article  MathSciNet  Google Scholar 

  35. Pang, B., Zhu, S., Kai, X.: Some new bounds on LCD codes over finite fields. Cryptogr. Commun. 12(4), 743–755 (2020)

    Article  MathSciNet  Google Scholar 

  36. Sendrier, N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discrete Math. 285(1), 345–347 (2004)

    Article  MathSciNet  Google Scholar 

  37. Shi, M., Huang, D., Sok, L., Solé, P.: Double circulant LCD codes over \(\mathbb{Z}_4\). Finite Fields Appl. 58, 133–144 (2019)

    Article  MathSciNet  Google Scholar 

  38. Shi, M., Li, S., Kim, J.-L., Solé, P.: LCD and ACD codes over a noncommutative non-unital ring with four elements. Cryptogr. Commun. 14(3), 627–640 (2022)

    Article  MathSciNet  Google Scholar 

  39. Shi, M., Özbudak, F., Xu, L., Solé, P.: LCD codes from tridiagonal Toeplitz matrices. Finite Fields Appl. 75, 101892 (2021)

    Article  MathSciNet  Google Scholar 

  40. Sok, L.: On Hermitian LCD codes and their Gray image. Finite Fields Appl. 62(2), 101623 (2020)

    Article  MathSciNet  Google Scholar 

  41. Sok, L.: On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs. IEEE Trans. Inf. Theory 68(7), 4329–4343 (2022)

    Article  MathSciNet  Google Scholar 

  42. Sok, L., Qian, G.: Linear codes with arbitrary dimensional hull and their applications to EAQECCs, Quantum Inf. Process. 21(2), 72 (2022)

    Google Scholar 

  43. Sok, L., Shi, M., Solé, P.: Construction of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018)

    Article  MathSciNet  Google Scholar 

  44. Sun, Z., Huang, S., Zhu, S.: Optimal quaternary Hermitian LCD codes and their related codes. Des. Codes Cryptogr. 91(4), 1527–1558 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hongwei Zhu for helpful discussions. The authors would also like to thank the National Natural Science Foundation of China (12071001) for funding this research. The authors would also like to thank the editor and the anonymous referees for helpful comments which have highly improved the quality of the paper.

Funding

This research is supported by the National Natural Science Foundation of China (12071001).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Minjia Shi.

Ethics declarations

Ethics approval and consent to participate

They have no known competing financial interests or personal relationships that might influence the work reported herein. All authors gave their informed consent.

Consent for Publication

All authors have seen and approved the final version of the submitted manuscript. They guarantee that this article is the authors original work and has not been previously published or considered for publication elsewhere

Conflicts of interest

The authors declare that there are no conflicts of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Binary Euclidean LCD codes from Theorem 3.2
Table 2 Binary Euclidean LCD codes from Theorems 3.5 and 3.10
Table 3 The binary LCD codes from some inequalities
Table 4 Bounds on the minimum diatance of binary Euclidean LCD codes

 

Table 5 Bounds on the minimum diatance of binary Euclidean LCD codes
Table 6 Ternary Euclidean LCD codes from Theorems 3.2 and 3.3
Table 7 Ternary Euclidean LCD codes from Theorems 3.5 and 3.10
Table 8 Bounds on the minimum distances of ternary Euclidean LCD codes

   

Table 9 Bounds on the minimum distances of ternary Euclidean LCD codes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Shi, M. & Liu, H. Several constructions of optimal LCD codes over small finite fields. Cryptogr. Commun. (2024). https://doi.org/10.1007/s12095-024-00699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12095-024-00699-x

Keywords

Mathematics Subject Classification (2010)

Navigation