Skip to main content
Log in

Targeting BRCA and PALB2 in Pancreatic Cancer

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

An important subgroup of pancreatic ductal adenocarcinomas (PDACs) harbor pathogenic variants in BRCA1, BRCA2, or PALB2. These tumors are exquisitely sensitive to platinum-based chemotherapy and patients may experience deep and durable responses to this treatment. PARP inhibitors offer potential respite from the cumulative toxicities of chemotherapy as they significantly extend progression-free survival compared to a chemotherapy holiday. Given the lack of proven survival benefit, the decision to use a maintenance PARP inhibitor rather than continue chemotherapy should be individualized. Interestingly, in both published clinical trials of maintenance PARP inhibitors, there is a striking range of interpatient benefit: Even in the platinum-sensitive setting, roughly 25% of tumors appear to be PARP inhibitor refractory (progressive disease within 2 months of starting treatment), 50% sustain moderate benefit (up to 2 years), and 25% are hyper-responsive (more than 2 years of benefit). This finding highlights the need to refine our understanding of which patients will respond to maintenance PARP inhibitors, both by being able to identify biallelic loss and by deepening our knowledge of resistance mechanisms and who develops them. Recent data supports that reversion mutations are common in PARP inhibitor refractory patients, but we have little understanding of the mechanisms that drive delayed resistance and long-term responses. Identifying which patients are more prone to certain mechanisms of resistance and tackling them with specific treatment strategies are areas of active investigation. Additionally, given that PARP inhibitors have limited overall efficacy for most patients, upfront combination strategies are an important future strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brody LC. Treating cancer by targeting a weakness. N Engl J Med. 2005;353(9):949–50. https://doi.org/10.1056/NEJMcibr052331.

    Article  PubMed  CAS  Google Scholar 

  2. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7. https://doi.org/10.1038/nature03443.

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Ghiorzo P. Genetic predisposition to pancreatic cancer. World J Gastroenterol. 2014;20(31):10778–89. https://doi.org/10.3748/wjg.v20.i31.10778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hoppe MM, Sundar R, Tan DSP, Jeyasekharan AD. Biomarkers for homologous recombination deficiency in cancer. J Natl Cancer Inst. 2018;110(7):704–13. https://doi.org/10.1093/jnci/djy085.

    Article  PubMed  CAS  Google Scholar 

  5. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764–75. https://doi.org/10.1158/1078-0432.CCR-13-2287.

    Article  PubMed  CAS  Google Scholar 

  6. Perkhofer L, Golan T, Cuyle PJ, Matysiak-Budnik T, Van Laethem JL, Macarulla T, et al. Targeting DNA damage repair mechanisms in pancreas cancer. Cancers (Basel). 2021;13(17). https://doi.org/10.3390/cancers13174259.

  7. Stancl P, Hamel N, Sigel KM, Foulkes WD, Karlic R, Polak P. The great majority of homologous recombination repair-deficient tumors are accounted for by established causes. Front Genet. 2022;13:852159. https://doi.org/10.3389/fgene.2022.852159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Casolino R, Paiella S, Azzolina D, Beer PA, Corbo V, Lorenzoni G, et al. Homologous recombination deficiency in pancreatic cancer: a systematic review and prevalence meta-analysis. J Clin Oncol. 2021;39(23):2617–31. https://doi.org/10.1200/JCO.20.03238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Klatte DCF, Wallace MB, Lohr M, Bruno MJ, van Leerdam ME. Hereditary pancreatic cancer. Best Pract Res Clin Gastroenterol. 2022;58–59:101783. https://doi.org/10.1016/j.bpg.2021.101783.

    Article  PubMed  Google Scholar 

  10. Brown TJ, Reiss KA. PARP inhibitors in pancreatic cancer. Cancer J. 2021;27(6):465–75. https://doi.org/10.1097/PPO.0000000000000554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. https://doi.org/10.1038/nature03445.

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99. https://doi.org/10.1158/0008-5472.CAN-12-2753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shen Y, Aoyagi-Scharber M, Wang B. Trapping poly(ADP-ribose) polymerase. J Pharmacol Exp Ther. 2015;353(3):446–57. https://doi.org/10.1124/jpet.114.222448.

    Article  PubMed  CAS  Google Scholar 

  14. D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 2018;71:172–6. https://doi.org/10.1016/j.dnarep.2018.08.021.

    Article  PubMed  CAS  Google Scholar 

  15. Lowery MA, Kelsen DP, Stadler ZK, Yu KH, Janjigian YY, Ludwig E, et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist. 2011;16(10):1397–402. https://doi.org/10.1634/theoncologist.2011-0185.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. https://doi.org/10.1056/NEJMoa0900212.

    Article  PubMed  CAS  Google Scholar 

  17. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol. 2010;28(15):2512–9. https://doi.org/10.1200/JCO.2009.26.9589.

    Article  PubMed  CAS  Google Scholar 

  18. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010;376(9737):245–51. https://doi.org/10.1016/S0140-6736(10)60893-8.

    Article  PubMed  CAS  Google Scholar 

  19. Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12(9):852–61. https://doi.org/10.1016/S1470-2045(11)70214-5.

    Article  PubMed  CAS  Google Scholar 

  20. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50. https://doi.org/10.1200/JCO.2014.56.2728.

    Article  PubMed  CAS  Google Scholar 

  21. Shroff RT, Hendifar A, McWilliams RR, Geva R, Epelbaum R, Rolfe L, et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precis Oncol. 2018;2018. https://doi.org/10.1200/PO.17.00316.

  22. Golan T, Sella T, O’Reilly EM, Katz MH, Epelbaum R, Kelsen DP, et al. Overall survival and clinical characteristics of BRCA mutation carriers with stage I/II pancreatic cancer. Br J Cancer. 2017;116(6):697–702. https://doi.org/10.1038/bjc.2017.19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wattenberg MM, Asch D, Yu S, O’Dwyer PJ, Domchek SM, Nathanson KL, et al. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br J Cancer. 2020;122(3):333–9. https://doi.org/10.1038/s41416-019-0582-7.

    Article  PubMed  CAS  Google Scholar 

  24. O’Reilly EM, Lee JW, Zalupski M, Capanu M, Park J, Golan T, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38(13):1378–88. https://doi.org/10.1200/JCO.19.02931.

    Article  PubMed  PubMed Central  Google Scholar 

  25. •• Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27. https://doi.org/10.1056/NEJMoa1903387. This study is of major importance because it is the first phase III trial that demonstrated the efficacy of a PARPi in PDAC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kindler HL, Hammel P, Reni M, Cutsem EV, Macarulla T, Hall MJ, et al. Overall survival results from the POLO trial: a phase III study of active maintenance olaparib versus placebo for germline BRCA-mutated metastatic pancreatic cancer. J Clin Oncol. 2022;40(34):3929–39. https://doi.org/10.1200/jco.21.01604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. •• Reiss KA, Mick R, O’Hara MH, Teitelbaum U, Karasic TB, Schneider C, et al. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. J Clin Oncol. 2021;39(22):2497–505. https://doi.org/10.1200/JCO.21.00003. This study is of major importance because it established that rucaparib is effective maintenance therapy for platinum-sensitive BRCA- or PALB2-mutated PDAC, and led to a category 2A recommendation for the use of rucaparib in this setting.

    Article  PubMed  CAS  Google Scholar 

  28. Javle M, Shacham-Shmueli E, Xiao L, Varadhachary G, Halpern N, Fogelman D, et al. Olaparib monotherapy for previously treated pancreatic cancer with DNA damage repair genetic alterations other than germline BRCA variants: findings from 2 phase 2 nonrandomized clinical trials. JAMA Oncol. 2021;7(5):693–9. https://doi.org/10.1001/jamaoncol.2021.0006.

    Article  PubMed  PubMed Central  Google Scholar 

  29. • Stossel C, Raitses-Gurevich M, Atias D, Beller T, Glick Gorman Y, Halperin S, et al. Spectrum of response to platinum and PARP inhibitors in germline BRCA-associated pancreatic cancer in the clinical and preclinical setting. Cancer Discov. 2023;13(8):1826-43. https://doi.org/10.1158/2159-8290.CD-22-0412. This study is of importance because it established that reversion mutations and monoallelic status are two of the dominant forms of resistance to olaparib in the clinical setting.

  30. • Brown TJ, Yablonovitch A, Till JE, Yen J, Kiedrowski LA, Hood R, et al. The clinical implications of reversions in patients with advanced pancreatic cancer and pathogenic variants in BRCA1, BRCA2, or PALB2 after progression on rucaparib. Clin Cancer Res. 2023. https://doi.org/10.1158/1078-0432.CCR-23-1467. This study is of importance because it established that reversion mutations were a major mechanism of resistance to PARPi associated with disease progression in the RUCAPANC2 study.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Golan T, O’Kane GM, Denroche RE, Raitses-Gurevich M, Grant RC, Holter S, et al. Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma. Gastroenterology. 2021;160(6):2119-32 e9. https://doi.org/10.1053/j.gastro.2021.01.220

  32. Ray-Coquard I, Pautier P, Pignata S, Perol D, Gonzalez-Martin A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–28. https://doi.org/10.1056/NEJMoa1911361.

    Article  PubMed  CAS  Google Scholar 

  33. Gonzalez-Martin A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019;381(25):2391–402. https://doi.org/10.1056/NEJMoa1910962.

    Article  PubMed  CAS  Google Scholar 

  34. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764–73. https://doi.org/10.1158/1078-0432.CCR-15-2477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jenner ZB, Sood AK, Coleman RL. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy. Future Oncol. 2016;12(12):1439–56. https://doi.org/10.2217/fon-2016-0002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107(10):1776–82. https://doi.org/10.1038/bjc.2012.451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ngoi NYL, Tan DSP. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: do we need it? ESMO Open. 2021;6(3): 100144. https://doi.org/10.1016/j.esmoop.2021.100144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Evans E, Dholakia J, Abraham J, Zhang J, Oberley M, Stafford P, et al. Whole exome sequencing provides loss of heterozygosity (LoH) data comparable to that of whole genome sequencing (171). Gynecologic Oncol. 2022;166:S100. https://doi.org/10.1016/S0090-8258(22)01398-1.

    Article  Google Scholar 

  39. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017;23(4):517–25. https://doi.org/10.1038/nm.4292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Antonarakis E, Moore J, Jin D, Chen T, Newberg J, Fleischmann Z, et al. Development of a pan-cancer algorithm to predict homologous recombination deficiency and sensitivity to PARPi therapy. Cancer Res. 2022;82(12_Supplement):1249-.

    Article  Google Scholar 

  41. Chen KT, Madison R, Moore J, Jin D, Fleischmann Z, Newberg J, et al. A novel HRD signature is predictive of FOLFIRINOX benefit in metastatic pancreatic cancer. Oncologist. 2023;28(8):691–8. https://doi.org/10.1093/oncolo/oyad178.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yen J, Tolkunov D, Safabakhsh P, Wang H, Gross A, Overstreet B, et al. Detection of homologous recombination deficiency (HRD) using a novel genomic and epigenomic liquid biopsy assay in patients with breast cancer. J Clin Oncol. 2023;41(16_suppl):556-. https://doi.org/10.1200/JCO.2023.41.16_suppl.556.

    Article  Google Scholar 

  43. Leibowitz BD, Dougherty BV, Bell JSK, Kapilivsky J, Michuda J, Sedgewick AJ, et al. Validation of genomic and transcriptomic models of homologous recombination deficiency in a real-world pan-cancer cohort. BMC Cancer. 2022;22(1):587. https://doi.org/10.1186/s12885-022-09669-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, Chen Y, et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 2020;10(10):1475–88. https://doi.org/10.1158/2159-8290.CD-19-1485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dreyer SB, Upstill-Goddard R, Legrini A, Biankin AV, Glasgow Precision Oncology L, Jamieson NB, et al. Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence. Gastroenterology. 2022;162(1):320-4 e4. https://doi.org/10.1053/j.gastro.2021.09.022

  46. Momtaz P, O’Connor CA, Chou JF, Capanu M, Park W, Bandlamudi C, et al. Pancreas cancer and BRCA: a critical subset of patients with improving therapeutic outcomes. Cancer. 2021;127(23):4393–402. https://doi.org/10.1002/cncr.33812.

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Park JYP, Pacis A, Denroche RE, Jang GH, Zhang A, et al. A preclinical trial and molecularly annotated patient cohort identify predictive biomarkers in homologous recombination-deficient pancreatic cancer. Clin Cancer Res. 2020;26(20):5462–76. https://doi.org/10.1158/1078-0432.CCR-20-1439.

    Article  PubMed  CAS  Google Scholar 

  48. Wicks AJ, Krastev DB, Pettitt SJ, Tutt ANJ, Lord CJ. Opinion: PARP inhibitors in cancer-what do we still need to know? Open Biol. 2022;12(7):220118. https://doi.org/10.1098/rsob.220118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ordonez LD, Hay T, McEwen R, Polanska UM, Hughes A, Delpuech O, et al. Rapid activation of epithelial-mesenchymal transition drives PARP inhibitor resistance in Brca2-mutant mammary tumours. Oncotarget. 2019;10(27):2586–606. https://doi.org/10.18632/oncotarget.26830.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;33(6):1078-93 e12 https://doi.org/10.1016/j.ccell.2018.05.008

  51. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A. 2008;105(44):17079–84. https://doi.org/10.1073/pnas.0806092105.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  52. Pettitt SJ, Krastev DB, Brandsma I, Drean A, Song F, Aleksandrov R, et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat Commun. 2018;9(1):1849. https://doi.org/10.1038/s41467-018-03917-2.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  53. Kais Z, Rondinelli B, Holmes A, O’Leary C, Kozono D, D’Andrea AD, et al. FANCD2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair. Cell Rep. 2016;15(11):2488–99. https://doi.org/10.1016/j.celrep.2016.05.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Madariaga A, Bowering V, Ahrari S, Oza AM, Lheureux S. Manage wisely: poly (ADP-ribose) polymerase inhibitor (PARPi) treatment and adverse events. Int J Gynecol Cancer. 2020;30(7):903–15. https://doi.org/10.1136/ijgc-2020-001288.

    Article  PubMed  PubMed Central  Google Scholar 

  55. LaFargue CJ, Dal Molin GZ, Sood AK, Coleman RL. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 2019;20(1):e15–28. https://doi.org/10.1016/S1470-2045(18)30786-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ronson GE, Piberger AL, Higgs MR, Olsen AL, Stewart GS, McHugh PJ, et al. PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nat Commun. 2018;9(1):746. https://doi.org/10.1038/s41467-018-03159-2.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  57. Farres J, Llacuna L, Martin-Caballero J, Martinez C, Lozano JJ, Ampurdanes C, et al. PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death Differ. 2015;22(7):1144–57. https://doi.org/10.1038/cdd.2014.202.

    Article  PubMed  CAS  Google Scholar 

  58. Illuzzi G, Staniszewska AD, Gill SJ, Pike A, McWilliams L, Critchlow SE, et al. Preclinical characterization of AZD5305, a next-generation, highly selective PARP1 inhibitor and trapper. Clin Cancer Res. 2022;28(21):4724–36. https://doi.org/10.1158/1078-0432.CCR-22-0301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Li D, Huang Z, Zhong J, Lin L, Zhang G, Zhuang W, et al. Efficacy and safety of fluzoparib combined with anlotinib in extensive stage small cell lung cancer after first-line platinum-based chemotherapy: a multi-center, single-arm prospective phase II clinical study (STAMP study). BMC Cancer. 2023;23(1):753. https://doi.org/10.1186/s12885-023-11230-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang L, Yang C, Xie C, Jiang J, Gao M, Fu L, et al. Pharmacologic characterization of fluzoparib, a novel poly(ADP-ribose) polymerase inhibitor undergoing clinical trials. Cancer Sci. 2019;110(3):1064–75. https://doi.org/10.1111/cas.13947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li N, Zhang Y, Wang J, Zhu J, Wang L, Wu X, et al. Fuzuloparib maintenance therapy in patients with platinum-sensitive, recurrent ovarian carcinoma (FZOCUS-2): a multicenter, randomized, double-blind, placebo-controlled, phase III trial. J Clin Oncol. 2022;40(22):2436–46. https://doi.org/10.1200/JCO.21.01511.

    Article  PubMed  CAS  Google Scholar 

  62. Stewart RA, Pilie PG, Yap TA. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 2018;78(24):6717–25. https://doi.org/10.1158/0008-5472.CAN-18-2652.

    Article  PubMed  CAS  Google Scholar 

  63. Shen J, Zhao W, Ju Z, Wang L, Peng Y, Labrie M, et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 2019;79(2):311–9. https://doi.org/10.1158/0008-5472.CAN-18-1003.

    Article  PubMed  CAS  Google Scholar 

  64. Chung V, Guthrie KA, Pishvaian MJ, Lowy AM, Chiorean EG, Duong MT, et al. Randomized phase II trial of olaparib + pembrolizumab versus olaparib alone as maintenance therapy in metastatic pancreatic cancer patients with germline BRCA1 or BRCA2 (gBRCA1/2+) mutations: SWOG S2001. Journal of Clinical Oncology. 2021;39(3_suppl):TPS447-TPS. https://doi.org/10.1200/JCO.2021.39.3_suppl.TPS447

  65. Park W, O’Connor C, Chou JF, Schwartz C, Varghese AM, Larsen M, et al. Phase 2 trial of pembrolizumab and olaparib (POLAR) maintenance for patients (pts) with metastatic pancreatic cancer (mPDAC): two cohorts B non-core homologous recombination deficiency (HRD) and C exceptional response to platinum-therapy. J Clin Oncol. 2023;41(16_suppl):4140-. https://doi.org/10.1200/JCO.2023.41.16_suppl.4140.

    Article  Google Scholar 

  66. Coleman RL, Fleming GF, Brady MF, Swisher EM, Steffensen KD, Friedlander M, et al. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med. 2019;381(25):2403–15. https://doi.org/10.1056/NEJMoa1909707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chiorean EG, Guthrie KA, Philip PA, Swisher EM, Jalikis F, Pishvaian MJ, et al. Randomized phase II study of PARP inhibitor ABT-888 (veliparib) with modified FOLFIRI versus FOLFIRI as second-line treatment of metastatic pancreatic cancer: SWOG S1513. Clin Cancer Res. 2021;27(23):6314–22. https://doi.org/10.1158/1078-0432.CCR-21-1789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Poruchynsky MS, Komlodi-Pasztor E, Trostel S, Wilkerson J, Regairaz M, Pommier Y, et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc Natl Acad Sci U S A. 2015;112(5):1571–6. https://doi.org/10.1073/pnas.1416418112.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  69. Lemjabbar-Alaoui H, Peto CJ, Yang YW, Jablons DM. AMXI-5001, a novel dual parp1/2 and microtubule polymerization inhibitor for the treatment of human cancers. Am J Cancer Res. 2020;10(8):2649–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Patel H, Hertzog J, Heller L, Vootukuri S, Zhang Y, Miller C, et al. Abstract 6264: NUV-868, a novel BD2-selective BET inhibitor, in combination with enzalutamide or olaparib, inhibits growth of solid tumor xenografts. Cancer Research. 2023;83(7_Supplement):6264-. https://doi.org/10.1158/1538-7445.Am2023-6264.

    Article  Google Scholar 

  71. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, et al. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature. 2015;518(7538):258–62. https://doi.org/10.1038/nature14184.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  72. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature. 2015;518(7538):254–7. https://doi.org/10.1038/nature14157.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  73. Zhou J, Gelot C, Pantelidou C, Li A, Yucel H, Davis RE, et al. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat Cancer. 2021;2(6):598–610. https://doi.org/10.1038/s43018-021-00203-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384(25):2394–405. https://doi.org/10.1056/NEJMoa2105215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. A. and K. R. wrote the main manuscript text. S. A. and K. R. prepared the table.

Corresponding author

Correspondence to Kim A. Reiss MD.

Ethics declarations

Conflict of Interest

Sriram Anbil declares no competing interests. Kim A. Reiss has served as a consultant/advisory board member for AstraZeneca, Bristol Myers Squibb, and Foundation Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbil, S., Reiss, K.A. Targeting BRCA and PALB2 in Pancreatic Cancer. Curr. Treat. Options in Oncol. 25, 346–363 (2024). https://doi.org/10.1007/s11864-023-01174-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01174-0

Keywords

Navigation