Skip to main content
Log in

Soil erosion control of Urmia Lake using indigenous ureolytic calcifying bacteria

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Land degradation caused by accelerated soil erosion is a significant issue, particularly in arid or semi-arid regions, such as Urmia Lake in northwest Iran, where rainfall and wind erosion are major contributors. Microbially induced CaCO3 precipitation using indigenous ureolytic calcifying bacteria is a promising nature-inspired technique for mitigating soil erosion. In this study, several strains of indigenous bacteria were isolated and screened for urease activity and CaCO3 precipitation ability. The strain with the highest activity was selected for crust formation, and different treatment cycles and cementation solution concentrations were employed for specimen preparation. The results show that even specimens with only three cycles of treatment provided considerable protection against rainfall and wind erosion by reducing the erosion rate by over 50% and five times of magnitude, respectively. The specimen treated with seven cycles of cementation solution at a concentration of 1 M produced the thickest and strongest crusts. This study highlights the potential of using native bacteria for treatment as an effective method for controlling soil erosion in arid or semi-arid regions. The findings could be valuable for researchers and engineers involved in erosion control and soil stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

BS :

Bacterial solution

CC :

CaCO3 content (%)

CP :

Precipitated CaCO3 by the bacterial strains (g)

CPE :

CaCO3 precipitation efficiency (%)

CS:

Cementation solution

OD 600 :

Optical density at a wavelength of 600 nm

RER :

Rainfall erosion rate [kg/(m2h)]

s :

Crust strength obtained from penetrometer test (kPa)

t :

Crust thickness (cm)

U :

Urease activity (mM urea hydrolyzed/min)

V :

Wind velocity (m/s)

ω :

Moisture content (%)

WER :

Wind erosion rate [kg/(m2h)]

ω R :

Relative moisture content (%)

References

  • Al Qabany A, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001

    Article  Google Scholar 

  • Aliyu AD, Mustafa M, Abd Aziz NA, Kong YC, Hadi NS (2023) Assessing indigenous soil ureolytic bacteria as potential agents for soil stabilization. J Trop Biodiv Biotechnol 8(1):75128

    Article  Google Scholar 

  • Al-Thawadi S (2008). High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Doctoral dissertation, Murdoch University

  • Bang S, Min SH, Bang SS (2011) Application of microbiologically induced soil stabilization technique for dust suppression. Int J Geo-Eng 3:27–37

    Google Scholar 

  • Bhat SA, Dar MUD, Meena RS (2019) Soil erosion and management strategies. Sustain Manag Soil Environ 73–122. https://doi.org/10.1007/978-981-13-8832-3_3

    Article  Google Scholar 

  • Blanco H, Lal R (2008) Principles of soil conservation and management, vol 167169. Springer, New York

    Google Scholar 

  • Boroughani M, Hashemi H, Hosseini SH, Pourhashemi S, Berndtsson R (2019) Desiccating Lake Urmia: a new dust source of regional importance. IEEE Geosci Remote Sens Lett 17(9):1483–1487

    Article  ADS  Google Scholar 

  • Bucala A (2014) The impact of human activities on land use and land cover changes and environmental processes in the Gorce Mountains (Western Polish Carpathians) in the past 50 years. J Environ Manage 138:4–14

    Article  PubMed  Google Scholar 

  • Cheng YJ, Tang CS, Pan XH, Liu B, Xie YH, Cheng Q, Shi B (2021) Application of microbial induced carbonate precipitation for loess surface erosion control. Eng Geol 294:106387

    Article  Google Scholar 

  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu HL (2014) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9:277–285

    Article  Google Scholar 

  • Dhami NK, Alsubhi WR, Watkin E, Mukherjee A (2017) Bacterial community dynamics and biocement formation during stimulation and augmentation: implications for soil consolidation. Front Microbiol 8:1267

    Article  PubMed  PubMed Central  Google Scholar 

  • Dou X, Ma X, Zhao C, Li J, Yan Y, Zhu J (2022) Risk assessment of soil erosion in Central Asia under global warming. CATENA 212:106056

    Article  Google Scholar 

  • Du H, Dou S, Deng X, Xue X, Wang T (2016) Assessment of wind and water erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, China. Ecol Ind 67:117–131

    Article  Google Scholar 

  • Dubey AA, Devrani R, Ravi K, Dhami NK, Mukherjee A, Sahoo L (2021a) Experimental investigation to mitigate aeolian erosion via biocementation employed with a novel ureolytic soil isolate. Aeol Res 52:100727

    Article  Google Scholar 

  • Dubey AA, Ravi K, Mukherjee A, Sahoo L, Abiala MA, Dhami NK (2021b) Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility. Sci Rep 11(1):1–15

    Google Scholar 

  • Fattahi SM, Soroush A, Huang N (2020a) Biocementation control of sand against wind erosion. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002268

    Article  Google Scholar 

  • Fattahi SM, Soroush A, Huang N (2020b) Wind erosion control using inoculation of Aeolian Sand by Cyanobacteria. Land Degrad Dev. https://doi.org/10.1002/ldr.3590

    Article  Google Scholar 

  • Fattahi SM, Soroush A, Huang N, Zhang J, Abbasi SJ, Yu Y (2020c) Laboratory study on biophysicochemical improvement of desert sand. CATENA 190:104531

    Article  CAS  Google Scholar 

  • Fattahi SM, Soroush A, Huang N, Zhang J, Jodari Abbasi S, Yu Y (2021a) A framework for predicting abrasion rupture of crusts in wind erosion. Earth Surf Proc Land 46(13):2565–2581

    Article  ADS  Google Scholar 

  • Fattahi SM, Soroush A, Huang N, Zhang J, Abbasi SJ, Yu Y (2021b) Durability of biotechnologically induced crusts on sand against wind erosion. J Arid Environ 189:104508. https://doi.org/10.1016/j.jaridenv.2021.104508

    Article  Google Scholar 

  • Ferreira CS, Seifollahi-Aghmiuni S, Destouni G, Ghajarnia N, Kalantari Z (2022) Soil degradation in the European Mediterranean region: processes, status and consequences. Sci Total Environ 805:150106

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gemma S, Terradellas E, Baklanov A, Kang U, Sprigg W, Nickovic S, Boloorani AD, Al-Dousari ABS, Benedetti A, Sealy A, Tong D (2016) Global Assessment of Sand and dust storms. Published by the United Nations Environment Programme (UNEP) Nairobi, Kenya

  • Ghezelbash GR, Haddadi M (2018) Production of nanocalcite crystal by a urease producing halophilic strain of Staphylococcus saprophyticus and analysis of its properties by XRD and SEM. World J Microbiol Biotechnol 34:1–10

    Article  CAS  Google Scholar 

  • Gomez MG, Martinez BC, DeJong JT, Hunt CE, deVlaming LA, Major DW, Dworatzek SM (2015) Field-scale bio-cementation tests to improve sands. Proc Inst Civil Eng-Ground Improv 168(3):206–216. https://doi.org/10.1680/grim.13.00052

    Article  Google Scholar 

  • Gomez MG, Anderson CM, Graddy CM, DeJong JT, Nelson DC, Ginn TR (2017) Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands. J Geotech Geoenviron Eng 143(5):04016124

    Article  Google Scholar 

  • Goudie AS (2018) Human impact on the natural environment. Wiley

    Google Scholar 

  • Gowthaman S, Mohsenzadeh A, Nakashima K, Kawasaki S (2022a) Removal of ammonium by-products from the effluent of bio-cementation system through struvite precipitation. Mater Today: Proc 61:243–249

    CAS  Google Scholar 

  • Gowthaman S, Nakashima K, Kawasaki S (2022b) Effect of wetting and drying cycles on the durability of bio-cemented soil of expressway slope. Int J Environ Sci Technol 19(4):2309–2322

    Article  CAS  Google Scholar 

  • Graddy CM, Gomez MG, Kline LM, Morrill SR, DeJong JT, Nelson DC (2018) Diversity of sporosarcina-like bacterial strains obtained from meter-scale augmented and stimulated biocementation experiments. Environ Sci Technol 52(7):3997–4005

    Article  CAS  PubMed  ADS  Google Scholar 

  • Harkes MP, Van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MC (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117

    Article  Google Scholar 

  • Islam MT, Chittoori BC, Burbank M (2020) Evaluating the applicability of biostimulated calcium carbonate precipitation to stabilize clayey soils. J Mater Civ Eng 32(3):04019369

    Article  CAS  Google Scholar 

  • Ivanov V, Stabnikov V (2017) Construction biotechnology: biogeochemistry, microbiology and biotechnology of construction materials and processes. Springer

    Book  Google Scholar 

  • Jiang NJ, Wang YJ, Chu J, Kawasaki S, Tang CS, Cheng L, Du YJ, Shashank BS, Singh DN, Han XL, Wang YZ (2022) Bio-mediated soil improvement: AN introspection into processes, materials, characterization and applications. Soil Use Manag 38(1):68–93

    Article  Google Scholar 

  • Kannan K, Bindu J, Vinod P (2020) Engineering behaviour of MICP treated marine clays. Mar Georesour Geotechnol 38(7):761–769

    Article  Google Scholar 

  • Kim G, Youn H (2016) Microbially induced calcite precipitation employing environmental isolates. Materials 9(6):468

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Konstantinou C, Wang Y, Biscontin G, Soga K (2021) The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Sci Rep 11(1):1–17

    Article  Google Scholar 

  • Kosmas C, Danalatos NG, Gerontidis S (2000) The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions. CATENA 40(1):3–17

    Article  Google Scholar 

  • Lee M, Gomez MG, Graddy CM, San Pablo AC, DeJong JT, Nelson DC (2023) Improving the spatial control of soil biocementation using indigenous microorganisms: column experiments and reactive transport modeling. Eng Geol 318:107104

    Article  Google Scholar 

  • Liu B, Zhu C, Tang CS, Xie YH, Yin LY, Cheng Q, Shi B (2020) Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng Geol 264:105389

    Article  Google Scholar 

  • Liu B, Xie YH, Tang CS, Pan XH, Jiang NJ, Singh DN, Cheng YJ, Shi B (2021) Bio-mediated method for improving surface erosion resistance of clayey soils. Eng Geol 293:106295

    Article  Google Scholar 

  • Maleki M, Ebrahimi S, Asadzadeh F, Tabrizi ME (2016) Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int J Environ Sci Technol 13(3):937–944. https://doi.org/10.1007/s13762-015-0921-z

    Article  Google Scholar 

  • Middleton N, Kang U (2017) Sand and dust storms: impact mitigation. Sustainability 9(6):1053. https://doi.org/10.3390/su9061053

    Article  CAS  Google Scholar 

  • Mohsenzadeh A, Aflaki E, Gowthaman S, Nakashima K, Kawasaki S, Ebadi T (2022) A two-stage treatment process for the management of produced ammonium by-products in ureolytic bio-cementation process. Int J Environ Sci Technol 1–14. https://doi.org/10.1007/s13762-021-03138-z

    Article  Google Scholar 

  • Mokhtarnejad L, Arzanlou M, Babai-Ahari A, Di Mauro S, Onofri A, Buzzini P, Turchetti B (2016) Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park, Iran. Extremophiles 20:915–928

    Article  CAS  PubMed  Google Scholar 

  • Montoya BM, DeJong JT (2015) Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):04015019

    Article  Google Scholar 

  • Mousavi A, Shahbazi F, Oustan S, Jafarzadeh AA, Minasny B (2020) Spatial distribution of iron forms and features in the dried lake bed of Urmia Lake of Iran. Geoderma Reg 21:e00275

    Article  Google Scholar 

  • Nassar MK, Gurung D, Bastani M, Ginn TR, Shafei B, Gomez MG, Graddy CM, Nelson DC, DeJong JT (2018) Large-scale experiments in microbially induced calcite precipitation (MICP): reactive transport model development and prediction. Water Resour Res 54(1):480–500

    Article  ADS  Google Scholar 

  • Nayanthara PGN, Dassanayake ABN, Nakashima K, Kawasaki S (2019) Microbial induced carbonate precipitation using a native inland bacterium for beach sand stabilization in nearshore areas. Appl Sci 9(15):3201

    Article  CAS  Google Scholar 

  • Nearing MA, Xie Y, Liu B, Ye Y (2017) Natural and anthropogenic rates of soil erosion. Int Soil Water Conserv Res 5(2):77–84

    Article  Google Scholar 

  • Neupane D, Yasuhara H, Kinoshita N, Ando Y (2015) Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils Found 55(2):447–457

    Article  Google Scholar 

  • Okwadha GD, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148

    Article  CAS  PubMed  ADS  Google Scholar 

  • Omoregie AI, Ngu LH, Ong DEL, Nissom PM (2019) Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatal Agric Biotechnol 17:247–255

    Article  Google Scholar 

  • Salifu E, MacLachlan E, Iyer KR, Knapp CW, Tarantino A (2016) Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng Geol 201:96–105

    Article  Google Scholar 

  • Shahrokhi-Shahraki R, Zomorodian SMA, Niazi A, O’Kelly BC (2015) Improving sand with microbial-induced carbonate precipitation. Proc Inst Civil Eng-Ground Improv 168(3):217–230

    Article  Google Scholar 

  • Shao Y (2008) Physics and modelling of wind erosion. Springer, Netherlands, Dordrecht

    Google Scholar 

  • Shaygan M, Baumgartl T (2022) Reclamation of salt-affected land: a review. Soil Syst 6(3):61

    Article  CAS  Google Scholar 

  • Singh RL, Singh PK (2017) Global environmental problems. In: Singh R (ed) Principles and applications of environmental biotechnology for a sustainable future. Applied environmental science and engineering for a sustainable future. Springer, Singapore. https://doi.org/10.1007/978-981-10-1866-4_2

    Chapter  Google Scholar 

  • Song C, Zhao Y, Cheng W, Hu X, Zhu S, Wu M, Fan Y, Liu W, Zhang M (2021) Preparation of microbial dust suppressant and its application in coal dust suppression. Adv Powder Technol 32(12):4509–4521

    Article  CAS  Google Scholar 

  • Stabnikov V, Chu J, Myo AN, Ivanov V (2013) Immobilization of sand dust and associated pollutants using bioaggregation. Water Air Soil Pollut 224(9):1631. https://doi.org/10.1007/s11270-013-1631-0

    Article  CAS  ADS  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571

    Article  CAS  Google Scholar 

  • Sun X, Miao L, Chen R (2021a) The application of bio-cementation for improvement in collapsibility of loess. Int J Environ Sci Technol 18:2607–2618

    Article  CAS  Google Scholar 

  • Sun X, Miao L, Wang H, Yin W, Wu L (2021b) Mineralization crust field experiment for desertsand solidification based on enzymatic calcification. J Environ Manage 287:112315

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Miao L, Chen R, Wang H, Xia J (2022) Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. J Environ Manage 301:113883

    Article  CAS  PubMed  Google Scholar 

  • Tang CS, Yin LY, Jiang NJ, Zhu C, Zeng H, Li H, Shi B (2020) Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environ Earth Sci 79:1–23

    Article  Google Scholar 

  • Terzis D, Laloui L (2019) A decade of progress and turning points in the understanding of bio-improved soils: a review. Geomech Energy Environ 19:100116

    Article  Google Scholar 

  • Tian K, Wu Y, Zhang H, Li D, Nie K, Zhang S (2018) Increasing wind erosion resistance of aeolian sandy soil by microbially induced calcium carbonate precipitation. Land Degrad Dev 29(12):4271–4281. https://doi.org/10.1002/ldr.3176

    Article  Google Scholar 

  • Wang H, Sun B, Yu X, Xin Z, Jia G (2020) The driver-pattern-effect connection of vegetation dynamics in the transition area between semi-arid and semi-humid northern China. CATENA 194:104713

    Article  Google Scholar 

  • Wang Z, Zhang N, Jin Y, Li Q, Xu J (2021) Application of microbially induced calcium carbonate precipitation (MICP) in sand embankments for scouring/erosion control. Mar Georesour Geotechnol 39(12):1459–1471

    Article  CAS  Google Scholar 

  • Wang DL, Tang CS, Pan XH, Liu B, Shi B (2023) Coupling effect of fiber reinforcement and MICP stabilization on the tensile behavior of calcareous sand. Eng Geol 317:107090

    Article  Google Scholar 

  • Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement. Doctoral dissertation, Murdoch University

  • Wu X, Zou X, Zhou N, Zhang C, Shi S (2015) Deceleration efficiencies of shrub windbreaks in a wind tunnel. Aeol Res 16:11–23. https://doi.org/10.1016/j.aeolia.2014.10.004

    Article  CAS  Google Scholar 

  • Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Dev 24(5):499–510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ebadi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: S. Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsenzadeh, A., Ebadi, T., Fattahi, S.M. et al. Soil erosion control of Urmia Lake using indigenous ureolytic calcifying bacteria. Int. J. Environ. Sci. Technol. 21, 5981–5996 (2024). https://doi.org/10.1007/s13762-023-05387-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05387-6

Keywords

Navigation