Skip to main content
Log in

Assessment of tomato genotypes against the whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and Tomato leaf curl virus under controlled condition

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The tomato leaf curl viruses (ToLCVs) causing tomato leaf curl disease (ToLCD) in tomatoes is one of the significant constraints for tomato production worldwide and is transmitted by the whitefly, Bemisia tabaci. The ToLCVs, with the emergence of several recombinant variants and B. tabaci with changes in its capability in pathogen transmission, are reported all over the Indian subcontinent. Tomato genotypes resistant to B. tabaci and ToLCV are vital for sustainable control of ToLCD. In the current study, the level of resistance/susceptibility of tomato genotypes to B. tabaci and ToLCV incidence under greenhouse conditions were studied, and promising entries were assessed for antixenosis (non-preference) and antibiosis resistance against B. tabaci. Greenhouse screening by mass release of ToLCV-virulent whiteflies revealed that genotypes EC-520,078 and EC-620,389 (p = < 0.0001) recorded highly resistant reactions for whitefly infestation and ToLCV incidence. The adult settling assay revealed that the genotypes EC-520,078, EC-620,389, EC-315,477, and EC-620,401 (p = < 0.0001) were less preferred by whiteflies. Tests on fecundity, nymphal emergence, nymphal development, and population buildup were conducted to infer the antibiosis effect of the tomato genotypes against B. tabaci. The genotype EC-520,078 (p = < 0.0001) recorded the lowest number of eggs, EC-620,389 (p = < 0.0001) with the lowest nymphal emergence, and EC-520,078, EC-620,389, and EC-620,401 (p = < 0.0001) registered the lowest nymphal development. The F2 generation in the population buildup study was significantly lower in EC-520,078, followed by EC-620,389 and EC-631,364 (p = < 0.0001). The identified resistant sources could be used to develop resistant genotypes against whiteflies and ToLCV in tomatoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amini SN, Golizadeh A, Tafaghodinia B, Razmjou J, Abbasipour H (2021) Interaction between host plant morphological characteristics with life history of the greenhouse whitefly Trialeurodes vaporariorum. Arthropod Plant Interact 15:875–885

    CAS  Google Scholar 

  • Awadalla SS, Bayoumy MH, Khattab MH, Abd El-Wahab AH (2014) Density-independent and inverse-density dependent parasitism of Encarsia lutea Masi and Eretmocerus Mundus Mercet to Bemisia tabaci Biotype ‘B’. Egypt J Biol Pest Control 24:125

    Google Scholar 

  • Banerjee MK, Kalloo MK (1987) Sources and inheritance of resistance to leaf curl virus in Lycopersicon. Theor Appl Genet 73:707–771

    CAS  PubMed  Google Scholar 

  • Bayoumy MH, Awadalla SS, El-Gendy MA, El-Lawatay NE (2017) Comparative morphology and chemical composition of plant leaf and their relation with population density of certain piercing-sucking insect pests. J Plant Prot 8:31–37

    Google Scholar 

  • Belete T (2018) Defense mechanisms of plants to insect pests: from morphological to biochemical approach. Trends Tech Sci Res 2:30–38

    Google Scholar 

  • Boica Junior AL, Campos ZR, Lourencao AL, Campos AR (2007) Adult attractiveness and oviposition preference of Bemisia tabaci (Genn.)(Homoptera: Aleyrodidae) B-biotype in cotton genotypes. Sci Agric 64:147–151

    Google Scholar 

  • Butter N, Vir B, Kaur G, Singh T, Raheja R (1992) Biochemical basis of resistance to whitefly Bemisia tabaci Genn. (Aleyrodidae: Hemiptera) in cotton. J Trop Agric 69:119–122

    CAS  Google Scholar 

  • da Silva JPGF, Baldin ELL, de Souza ES, Lourenção AL (2012) Assessing Bemisia tabaci (Genn.) Biotype B resistance in soybean genotypes: antixenosis and antibiosis. Chil J Agric Res 72:516

    Google Scholar 

  • de Almeida KC, de Resende JTV, Hata FT, Oliveira LVB, Neto JG (2023) Characterization of Solanum sp. Lycopersicon section for density and types of leaf trichomes and resistance to whitefly and tomato pinworm. Sci Hortic 310:111746

    CAS  Google Scholar 

  • Deng D, McGrath PF, Robinson DJ, Harrison BD (1994) Detection and differentiation of whitefly-transmitted geminiviruses in plants and vector insects by the polymerase chain reaction with degenerate primers. Ann Appl Biol 125:327–336

    CAS  Google Scholar 

  • Devi MG, Rustia DJA, Braat L, Swinkels K, Espinosa FF, van Marrewijk BM, Hemming J, Caarls L (2023) Eggsplorer: a rapid plant–insect resistance determination tool using an automated whitefly egg quantification algorithm. Plant Methods 19:49

    PubMed  PubMed Central  Google Scholar 

  • Dias DM, Resende JTV, Marodin JC, Matos R, Lustosa IF, Resende NCV (2016) Acyl sugars and whitefly (Bemisia tabaci) resistance in segregating populations of tomato genotypes. Genet Mol Res 15:1–11

    Google Scholar 

  • Firdaus S, van Heusden AW, Hidayati N, Supena EDJ, Visser RGF, Vosman B (2012) Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 187:31–45

    Google Scholar 

  • Fortes IM, Fernandez Munoz R, Moriones E (2020) Host plant resistance to Bemisia tabaci to control damage caused in tomato plants by the emerging crinivirus tomato chlorosis virus. Front Plant Sci 11:1574

    Google Scholar 

  • Gadhave KR, Gautam S, Rasmussen DA, Srinivasan R (2020) Aphid transmission of potyvirus: the largest plant-infecting RNA virus genus. Viruses 12:773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao ZP, Feng ZB, Sheng L, Fei WX, Hou SM (2023) Aphids on aphid-susceptible cultivars have easy access to turnip mosaic virus and effective inoculation on aphid-resistant cultivars of oilseed rape (Brassica napus). Plants 12:1972

  • Horowitz AR, Ishaaya I (2014) Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Manag Sci 70:1568–1572

    CAS  PubMed  Google Scholar 

  • Horowitz AR, Ghanim M, Roditakis E, Nauen R, Ishaaya I (2020) Insecticide resistance and its management in Bemisia tabaci species. J Pest Sci 93:893–910

    Google Scholar 

  • Hossain I, Khan MMH, Jahan SMH, Ullah MH, Rahman MZ (2018) Host preference, fecundity and longevity of whitefly Bemisia tabaci on brinjal and tomato. Bangladesh J Entomol 18:23–30

    Google Scholar 

  • Jain H, Chahal S, Singh I, Sain SK, Siwach P (2023) The rising threat of geminiviruses: molecular insights into the disease mechanism and mitigation strategies. Mol Biol Rep 50:3835–3848

    CAS  PubMed  Google Scholar 

  • Jamuna B, Bheemanna M, Hosamani AC, Anna T, Naveen R (2017) Screening of tomato cultivars (hybrids/varieties) for whitefly, B. Tabaci in field condition. Int J Curr Microbiol Appl Sci 6:903–908

    Google Scholar 

  • Jindal V, Dhaliwal G (2009) Elucidating resistance in cotton genotypes to whitefly, Bemisia tabaci, by population buildup studies. Phytoparasitica 37:137–145

    Google Scholar 

  • Jyothi G, Rangaswamy K (2015) Identification of biotype and detection of endosymbionts of Bemisia tabaci in Karnataka. Biosci Trends 8:2307–2312

    Google Scholar 

  • Khan I, Wan F (2015) Life history of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B on tomato and cotton host plants. J Entomol Zool Stud 3:117–121

    Google Scholar 

  • Kortbeek RW, Galland MD, Muras A, van der Kloet FM, André B, Heilijgers M, van Hijum SA, Haring MA, Schuurink RC, Bleeker PM (2021) Natural variation in wild tomato trichomes; selecting metabolites that contribute to insect resistance using a random forest approach. BMC Plant Biol 21:1–19

    Google Scholar 

  • Kumar K, Pal S, Devi YK (2020) Morpho-physical characteristic in tomato imparting resistance to sucking pest whitefly, Bemisia tabaci (Gennadius) Aleyrodidae: Hemiptera: a review. J Emerg Technol Innov 7:1512–1522

    Google Scholar 

  • Latournerie-Moreno L, Ic-Caamal A, Ruiz-Sánchez E, Ballina-Gómez H, Islas-Flores I, Chan-Cupul W, González-Mendoza D (2015) Survival of Bemisia tabaci and activity of plant defense-related enzymes in genotypes of Capsicum annuum L. Chil J Agric Res 75:71–77

    Google Scholar 

  • Li Y, Mbata GN, Punnuri S, Simmons AM, Shapiro-Ilan DI (2021) Bemisia tabaci on vegetables in the southern United States: incidence, impact, and management. Insects 12:198

    PubMed  PubMed Central  Google Scholar 

  • Li D, Li HY, Zhang JR, Wu YJ, Zhao SX, Liu SS, Pan LL (2023) Plant resistance against whitefly and its engineering. Front Plant Sci 14:1232735

    PubMed  PubMed Central  Google Scholar 

  • Maluta NKP, Fereres A, Lopes JRS (2017) Settling preferences of the whitefly vector Bemisia tabaci on infected plants varies with virus family and transmission mode. Entomol Exp Appl 165:138–147

    CAS  Google Scholar 

  • Marilene F, Vendramim JD (2002) Development of Bemisia tabaci (Gennadius, 1889) biotype B on Lycopersicon spp. genotypes. Sci Agric 59:665–669

    Google Scholar 

  • Millán-Chaidez R, Garzón-Tiznado JA, Linares-Flores PJ, Velarde-Félix S, Lugo-García GA, Retes-Manjarrez JE (2020) Resistance to Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean (Q biotype) in landrace and wild tomato populations from Mexico. Fla Entomol 103:472–478

    Google Scholar 

  • Murgianto F, Hidayat P, Triwidodo H (2023) Bemisia tabaci (Hemiptera: Aleyrodidae): evaluation of leaf trichome density based resistance on several soybean varieties. J Trop Plant Pests Dis 23:9–14

    Google Scholar 

  • Palanisamy M, Jat GS, Kalia P, Pandey CD, Raman S, Kumari S, Kumar S, Tomar BS (2023) Screening and validation of Ty-1, Ty-3 and Ty-3 a specific markers in Solanum chilense accessions for resistance to Tomato leaf curl virus. Genet Resour Crop Evol 4:1–8

    Google Scholar 

  • Penalver C, Garzo AE, Prieto-Ruiz I, Diaz‐Carro M, Winters A, Moreno A, Fereres A (2020) Feeding behavior, life history and virus transmission ability of Bemisia tabaci mediterranean species (Hemiptera: Aleyrodidae) under elevated CO2. Insect Sci 27:558–570

    Google Scholar 

  • Peterson RK, Varella AC, Higley LG (2017) Tolerance: the forgotten child of plant resistance. PeerJ 5:3934

    Google Scholar 

  • Rakha M, Hanson P, Ramasamy S (2017) Identification of resistance to Bemisia tabaci Genn. In closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet Resour Crop Ev 64:247–260

    Google Scholar 

  • Riahi C, Urbaneja A, Fernández-Muñoz R, Fortes IM, Moriones E, Pérez-Hedo M (2023) Induction of glandular trichomes to control Bemisia tabaci in tomato crops: modulation by the natural enemy Nesidiocoris tenuis. Phytopathol 113:11

    Google Scholar 

  • Rodríguez-López MJ, Moriones E, Fernandez MR (2020) An acylsucrose-producing tomato line derived from the wild species Solanum pimpinellifolium decreases fitness of the whitefly Trialeurodes vaporariorum. Insects 11:616

    PubMed  PubMed Central  Google Scholar 

  • Rubio L, Galipienso L, Ferriol I (2020) Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front Plant Sci 11:1092

    PubMed  PubMed Central  Google Scholar 

  • Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N (2020) A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 11:619

    PubMed  PubMed Central  Google Scholar 

  • Santegoets J, Bovio M, van’t Westende W, Voorrips RE, Vosman B (2021) A novel non-trichome based whitefly resistance QTL in Solanum galapagense. Euphytica 217:1–11

    Google Scholar 

  • SAS, Institute S (1985) User’s guide: statistics. Sas Institute Cary, North Carolina

    Google Scholar 

  • Schuurink R, Tissier A (2020) Glandular trichomes: micro-organs with model status. New Phytol 25:2251–2266

    Google Scholar 

  • Shah MMR, Zhang S, Liu T (2015) Whitefly, host plant and parasitoid: a review on their interactions. Asian J Appl Sci 4:48–61

    Google Scholar 

  • Shah SHJ, Paredes-Montero JR, Malik AH, Brown JK, Qazi J (2020) Distribution of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) mitotypes in commercial cotton fields in the Punjab province of Pakistan. Fla Entomol 103:41–47

    Google Scholar 

  • Singh RK, Rai N, Singh AK, Kumar P, Singh B (2019) A critical review on Tomato leaf curl virus resistance in tomato. Int J Veg Sci 25:373–393

    Google Scholar 

  • Soares MA, Carvalho GA, Campos MR, Passos LC, Haro MM, Lavoir AV, Biondi A, Zappalà L, Desneux N (2020) Detrimental sublethal effects hamper the effective use of natural and chemical pesticides in combination with a key natural enemy of Bemisia tabaci on tomato. Pest Manag Sci 76:3551–3559

    CAS  PubMed  Google Scholar 

  • Tamilselvan R, Mahalingam CA, Mohankumar S, Senguttuvan K (2021) Characterization of resistance mechanisms to the whitefly, Bemisia tabaci Asia-II-8 (Hemiptera: Aleyrodidae) in cotton genotypes. Int J Trop Insect Sci 41:373–381

    Google Scholar 

  • Tatineni S, Hein GL (2023) Plant viruses of agricultural importance: current and future perspectives of virus disease management strategies. Phytopathol 113:117–141

    CAS  Google Scholar 

  • Tenguri P, Gawande SP, Kumar R (2023) The outbreak of cotton whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and its management in North India. J Entomol Res 47:21–27

    CAS  Google Scholar 

  • Therezan R, Kortbeek R, Vendemiatti E, Legarrea S, de Alencar SM, Schuurink RC, Bleeker P, Peres LE (2021) Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Planta 254:11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas A, Naveen NC, Ramamurthy VV (2015) Comparative analyses of morphological, anatomical and nutritional traits of cotton cultivars in relation to Bemisia tabaci (Hemiptera: Aleyrodidae). Indian J Agric Sci 85:950–954

    Google Scholar 

  • Toscano LC, Boica AL Jr, Maruyama WI (2002) Nonpreference of whitefly for oviposition in tomato genotypes. Sci Agric 59:677–681

    Google Scholar 

  • Vendemiatti E, Therezan R, Vicente MH, Pinto MDS, Bergau N, Yang L, Bernardi WF, Alencar SMD, Zsögön A, Tissier A, Benedito VA (2022) The genetic complexity of type-IV trichome development reveals the steps towards an insect-resistant tomato. Plants 11:1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma N, Dhatt AS, Sharma A, Garcha KS, Sharma M, Bhatia D, Khosa JS, Kaur B (2023) Genetics of begomovirus resistance in Cucurbita moschata Duchesne: a novel resistant source PVR-1343. Sci Hortic 322:112393

    CAS  Google Scholar 

  • Vijeth S, Dhaliwal MS, Jindal SK, Garg N, Kaushik P, Sharma A (2019) Diallel analysis of elite tomato lines comprising leaf curl virus resistance genes. Appl Ecol Environ Res 17:3

    Google Scholar 

  • Yadav RK, Jayanthi P, Kumar M, Saravan P, Kumar V, Reddy KM (2020) Screening Chilli genotypes for whitefly (Bemisia tabaci Genn.) Resistance: a vector for Chilli leaf curl virus. Int J Chem Stud 8:971–979

    Google Scholar 

  • Zeist AR, de Resende JTV, Perrud AC, Gabriel A, Maluf WR, Arantes JHV, Youssef K (2021) Resistance to Bemisia tabaci in tomato species and hybrids and its association with leaf trichomes. Euphytica 217:85

    CAS  Google Scholar 

  • Zeshan M, Khan M, Ali S, Arshad M (2016) Phenotypic evaluation of tomato germplasm for the source of resistance against tomato leaf curl virus disease. J Anim Plant Sci 26:194–200

    Google Scholar 

  • Zhang Y, Song H, Wang X, Zhou X, Zhang K, Chen X, Liu J, Han J, Wang A (2020) The roles of different types of trichomes in tomato resistance to cold, drought, whiteflies and botrytis. Agron 10:411

    Google Scholar 

  • Zhao J, Sun X, Dai H, Zhang X, Zhang D, Zhu X (2023) Changes in gene expression of whiteflies, Bemisia tabaci MED Feeding on tomato plants infected by one of the criniviruses, tomato chlorosis virus through transcriptome analysis. Int J Genomics 2023:3807812

Download references

Acknowledgements

This research was supported by the University Grants Commission (UGC), Ministry of Social Justice and Empowerment, New Delhi, India, in the form of a National Fellowship for students awarded to M.K. Ponselvakumari is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All the authors/co-authors are well conversant with the contents and agree to the sequence of authorship.

Corresponding author

Correspondence to M. K. Ponselvakumari.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponselvakumari, M.K., Murugan, M., Chinniah, C. et al. Assessment of tomato genotypes against the whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and Tomato leaf curl virus under controlled condition. Int J Trop Insect Sci 44, 581–593 (2024). https://doi.org/10.1007/s42690-024-01167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-024-01167-y

Keywords

Navigation