Skip to main content

Advertisement

Log in

A therapeutical insight into the correlation between circRNAs and signaling pathways involved in cancer pathogenesis

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Pre-messenger RNA molecules are back-spliced to create circular RNAs, which are non-coding RNA molecules. After a thorough investigation, it was discovered that these circRNAs have critical biological roles. CircRNAs have a variety of biological functions, including their ability to operate as microRNA sponges, interact with proteins to alter their stabilities and activities, and provide templates for the translation of proteins. Evidence supports a link between the emergence of numerous diseases, including various cancer types, and dysregulated circRNA expression. It is commonly known that a significant contributing element to cancer development is the disruption of numerous molecular pathways essential for preserving cellular and tissue homeostasis. The dysregulation of multiple biological processes is one of the hallmarks of cancer, and the molecular pathways linked to these processes are thought to be promising targets for therapeutic intervention. The biological and carcinogenic effects of circRNAs in the context of cancer are thoroughly reviewed in this article. Specifically, we highlight circRNAs’ involvement in signal transduction pathways and their possible use as novel biomarkers for the early identification and prognosis of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ncRNAs:

Non-coding RNAs

mRNA:

Messenger RNA

LncRNA:

Long non-coding RNA

piRNA:

PIWI-interacting RNAs

miRNA:

microRNA

siRNA:

small interfering RNA

circRNA:

Circular RNA

ceRNA:

Competing endogenous RNA

RBPs:

RNA-binding proteins

MBNL1:

Muscleblind-like protein 1

EIciRNA:

Exon–intron circRNA

IRES:

Internal ribosome entry site

MET:

Epithelial-mesenchymal transition

NSCLC:

Non-small cell lung cancer

PTK2:

Protein tyrosine kinase 2

TGFβ:

Transforming growth factor-β

TIF1γ:

Transcriptional intermediary factor 1 gamma

SMARCA5:

SWI/SNF-elated, matrix-associated, actin dependent regulator of chromatin, subfamily A, member 5

GC:

Gastric cancer

TNBC:

Triple-negative breast cancer

FoxO3:

Forkhead box O-3

CDH19:

Cadherin-19

GLIS3:

GLIS family zinc finger 3 isoform

AIF1L:

Allograft inflammatory factor 1 like

TNM:

Tumor, nodes, and metastases

CRC:

Colorectal cancer

LATS1:

large tumor suppressor gene 1

EPHA3:

Ephrin tyrosine kinase a3

PDE4D:

Phosphodiesterase 4D

BMP-2:

Bone morphogenetic protein 2

DNMT3A:

DNA methyltransferase 3 alpha

SEMA5A:

Semaphorin 5A

CCNE1:

Cyclin E1

CDR1:

Cerebellum degeneration-related antigen 1

TLK1:

Tousled-like kinase 1

HCC:

Hepatocellular carcinoma

PD-L1:

Programmed cell death ligand 1

FGFR1:

Fibroblast growth factor receptor 1 protein

CXCR-4:

C-X-C chemokine receptor type 4

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

PI3K:

Phosphatidylinositol 3-kinase

AKT:

Protein kinase B

NF-κB:

Nuclear factor kappa B

WNT5A:

Wnt family member 5A

NIPBL:

Nipped-B-like protein

ZEB1:

Zinc finger E‐box binding homeobox 1

PHF16:

PHD finger protein 16

RNF128:

Ring finger protein 128

FZD5:

Frizzled class receptor 5

ITCH:

Itchy E3 ubiquitin protein ligase

FUS:

Fused in sarcoma

SP:

Specificity protein 1

EIF4A3:

Eukaryotic translation initiation factor 4A3

CAPG:

Capping actin protein, gelsolin-like

NFATC3:

Nuclear factor of activated T cells 3

CTNNB1:

Catenin beta 1

PLAGL2:

Pleomorphic adenoma gene like-2

MTSS1:

Metastasis suppressor

NEK6:

NIMA-related kinase 6

CDK13:

Cyclin-dependent kinase 13

NOL10:

Nucleolar protein 10

SOCS2:

Suppressors of cytokine signaling 2

SPARC:

Secreted protein acidic and rich in cysteine

OSCC:

Oral squamous cell carcinoma

STAT3:

Signal transducers and activators of transcription 3

JAK:

Janus kinase

ANKIB1:

Ankyrin repeat and IBR domain containing 1

NRIP1:

Nuclear receptor-interacting protein 1

MAPK:

Mitogen activated protein kinases

TFAP2C:

Transcription factor AP‐2 gamma

TRIM29:

Tripartite motif containing 29

IL4R:

Interleukin 4 receptor

IGF1R:

Insulin-like growth factor 1 receptor

PIP5K1A:

Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha

TCF12:

Transcription factor 12

HIPK3:

Homeodomain interacting protein kinase 3

NUPR1:

Nuclear protein 1

CSPP1:

Centrosome and spindle pole associated protein

ITGB1:

Integrin beta 1

mTOR:

Mammalian target of rapamycin

PTEN:

Phosphatase and TENsin homolog deleted on chromosome 10

ACTR2:

Actin related protein 2

TAZ:

Tafazzin

eEF2:

Eukaryotic translation elongation factor 2

F-actin:

Filamentous actin

LATS2:

Large tumor suppressor kinase 2

PPP1R12A:

Protein phosphatase 1, regulatory subunit 12a

XRN2:

5′-3′-exoribonuclease 2

YAP:

Yes-associated protein

ROCK1:

Rho-associated protein kinase 1

IPO7:

Importin 7

CEP128:

Centrosomal protein 128

MYD88:

Myeloid differentiation primary response 88

PVT1:

Plasmacytoma variant translocation 1 gene

SLC7A11:

Solute carrier family 7 member 11

UBE4B:

Ubiquitination factor E4B

CORO1C:

Coronin‐like actin‐binding protein 1C

GLIS2:

GLIS family zinc finger 2

IKBKB:

Inhibitor of nuclear factor kappa B kinase subunit beta

IKK:

IκB kinase

IκBα:

Nuclear factor-kappa B inhibitor alpha

ABHD5:

α/β-Hydrolase domain-containing protein 5

ATGL:

Adipose triglyceride lipase

TNF-α:

Tumor necrosis factor alpha

TLR4:

Toll-like receptors

CSC:

Cancer stem cell

IPO11:

Importin-11

TOP1:

DNA topoisomerase I

GLI1:

Glioma-associated oncogene homolog 1

CYR61:

Cysteine-rich angiogenic inducer 61

DCAF6:

DDB1 and CUL4 associated factor 6

SLC6A6:

Solute carrier family 6 member 6

HSP90:

Heat shock protein 90

NFIX:

Nuclear factor I X

APLP2:

Amyloid precursor-like protein 2

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas:

CRISPR-associated protein

MMP:

Matrix metallopeptidase

APLP2:

Amyloid precursor-like protein 2

References

  1. Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet. 2015;6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.

    Article  CAS  PubMed  Google Scholar 

  3. Kos A, Dijkema R, Arnberg A, Van der Meide P, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature. 1986;323:558–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58:870–85.

    Article  CAS  PubMed  Google Scholar 

  5. Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023;42:1–18.

    Article  Google Scholar 

  6. Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 2019;10:4317.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu F, Han B, Wu S, Yang L, Leng S, Li M, Liao J, Wang G, Ye Q, Zhang Y. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. J Neurosci. 2019;39:7369–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang F, Zhang R, Zhang X, Wu Y, Li X, Zhang S, Hou W, Ding Y, Tian J, Sun L. Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging (Albany NY). 2018;10:2266.

    Article  CAS  PubMed  Google Scholar 

  9. Hu F, Peng Y, Fan X, Zhang X, Jin Z. Circular RNAs: implications of signaling pathways and bioinformatics in human cancer. Cancer Biol Med. 2023;20:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang C, Liu W-R, Tan S, Zhou J-K, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y. Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer. 2022;21:1–16.

    Article  CAS  Google Scholar 

  11. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Yang L, Chen L-L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.

    Article  CAS  PubMed  Google Scholar 

  14. Tagawa T, Gao S, Koparde VN, Gonzalez M, Spouge JL, Serquiña AP, Lurain K, Ramaswami R, Uldrick TS, Yarchoan R. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc Natl Acad Sci. 2018;115:12805–10.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiao Y, Zhao X, Liu J, Yang W. Epstein-Barr virus circRNAome as host miRNA sponge regulates virus infection, cell cycle, and oncogenesis. Bioengineered. 2019;10:593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt CA, Giusto JD, Bao A, Hopper AK, Matera AG. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 2019;47:6452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, Sun H, Pan Y, He B, Wang S. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9:417.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10:3503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13:1–16.

    Article  Google Scholar 

  20. Ma J-h, Qin L, Li X. Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal. 2020;18:1–13.

    Article  Google Scholar 

  21. Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10:1–11.

    Article  CAS  Google Scholar 

  22. Wang S, Cheng L, Wu H, Li G. Mechanisms and prospects of circular RNAs and their interacting signaling pathways in colorectal cancer. Front Oncol. 2022;12: 949656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, He Z, Wang Y, Li J. Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics. 2017;7:3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang L, Tong X, Zhou Z, Wang S, Lei Z, Zhang T, Liu Z, Zeng Y, Li C, Zhao J. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol Cancer. 2018;17:1–18.

    Article  Google Scholar 

  25. Tong S. Circular RNA SMARCA5 may serve as a tumor suppressor in non-small cell lung cancer. J Clin Lab Anal. 2020;34: e23195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, Chen X, Zhu J. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 2017;16:1–16.

    Article  Google Scholar 

  27. Lu J, Zhang P-y, Li P, Xie J-w, Wang J-b, Lin J-x, Chen Q-y, Cao L-l, Huang C-m, Zheng C-h. Circular RNA hsa_circ_0001368 suppresses the progression of gastric cancer by regulating miR-6506–5p/FOXO3 axis. Biochem Biophys Res Commun. 2019;512:29–33.

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y, Han T, Liu C. CircRNA hsa_circ_0006220 acts as a tumor suppressor gene by regulating miR-197–5p/CDH19 in triple-negative breast cancer. Ann Transl Med. 2021;9:1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao S, Yin Y, Hu H, Hong S, He W, Lv W, Liu R, Li Y, Yu S, Xiao H. CircGLIS3 inhibits thyroid cancer invasion and metastasis through miR-146b-3p/AIF1L axis. Cell Oncol. 2023;43:1–13.

    Google Scholar 

  30. Deng YY, Min YJ, Zhou K, Yang QS, Peng M, Cui ZR, Zhu XL, Liu H, Wang M, Zhang X, Liu LX. Identification of the tumor-suppressive role of circular RNA-FOXO3 in colorectal cancer via regulation of miR-543/LATS1 axis. Oncol Rep. 2021. https://doi.org/10.3892/or.2021.8190.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Deng Y-Y, Min Y-J, Zhou K, Yang Q-S, Peng M, Cui Z-R, Zhu X-L, Liu H, Wang M, Zhang X. Identification of the tumor-suppressive role of circular RNA-FOXO3 in colorectal cancer via regulation of miR-543/LATS1 axis. Oncol Rep. 2021;46:1–11.

    Article  Google Scholar 

  32. Li J, Lv J, Chen Y, Li L. Tumor suppressor circPDE4D inhibits the progression of colorectal cancer and regulates oxaliplatin chemoresistance. Gene. 2023;864: 147323.

    Article  CAS  PubMed  Google Scholar 

  33. Feng H, Deng Z, Peng W, Wei X, Liu J, Wang T. Circular RNA EPHA3 suppresses progression and metastasis in prostate cancer through the miR-513a-3p/BMP2 axis. J Transl Med. 2023;21:1–15.

    Article  Google Scholar 

  34. Zhang B, Yang S, Wang J. Circ_0084615 is an oncogenic circular RNA in colorectal cancer and promotes DNMT3A expression via repressing miR-599. Pathol Res Pract. 2021;224: 153494.

    Article  CAS  PubMed  Google Scholar 

  35. Ye Q, Liu S, Lin S, Xie W. Circular RNA circSEMA5A facilitates colorectal cancer development by regulating microRNA-195-5p to target CCNE1 axis. Cell Signal. 2023;107: 110649.

    Article  CAS  PubMed  Google Scholar 

  36. Yi H, Han Y, Li S. Oncogenic circular RNA circ_0007534 contributes to paclitaxel resistance in endometrial cancer by sponging miR-625 and promoting ZEB2 expression. Front Oncol. 2022;12: 985470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS ONE. 2016;11: e0158347.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu Y, Liu Y, Zhang K, Jiang L. Circular RNA TLK1 exerts oncogenic functions in hepatocellular carcinoma by acting as a ceRNA of miR-138–5p. J Oncol. 2022;2022:1–9.

    Google Scholar 

  39. Qu D, Yan B, Xin R, Ma T. A novel circular RNA hsa_circ_0020123 exerts oncogenic properties through suppression of miR-144 in non-small cell lung cancer. Am J Cancer Res. 2018;8:1387.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu W, Li L, Li L, Guo N, Ma X. Circular RNA circ_0101675 promotes NSCLC cell proliferation, migration, invasion, angiogenesis and immune evasion by sponging miR-607/PDL1 axis. Biochem Genet. 2023. https://doi.org/10.1007/s10528-023-10493-8.

    Article  PubMed  Google Scholar 

  41. Zhang Q, Chen S, Zhen Y, Gao P, Zhang Z, Guo H, Wang Y. Circular RNA circFGFR1 functions as an oncogene in glioblastoma cells through sponging to hsa-miR-224–5p. J Immunol Res. 2022;2022:1–14.

    Google Scholar 

  42. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  CAS  PubMed  Google Scholar 

  43. Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol. 2012;204:17–33.

    Article  CAS  Google Scholar 

  44. Li Y, Kong Y, An M, Luo Y, Zheng H, Lin Y, Chen J, Yang J, Liu L, Luo B. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. J Exp Clin Cancer Res. 2023;42:191.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ding L, Lin Y, Chen X, Wang R, Lu H, Wang H, Luo W, Lu Z, Xia L, Zhou X. circPHF16 suppresses prostate cancer metastasis via modulating miR-581/RNF128/Wnt/β-catenin pathway. Cell Signal. 2023;102: 110557.

    Article  CAS  PubMed  Google Scholar 

  46. Huang J, Cai Y, Guo L, Huang W, Yan J, Lai J, Wang Y, Jiang D, Peng L. hsa_circ_0136839 regulates the malignant phenotypes of nasopharyngeal carcinoma via the Wnt/β-catenin signaling pathway. Pathol Res Pract. 2023;245: 154433.

    Article  CAS  PubMed  Google Scholar 

  47. Huang G, Liang M, Liu H, Huang J, Li P, Wang C, Zhang Y, Lin Y, Jiang X. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 2020;11:1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu Q, Lu G, Luo Z, Gui F, Wu J, Zhang D, Ni Y. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis. Biochem Biophys Res Commun. 2018;497:626–32.

    Article  CAS  PubMed  Google Scholar 

  49. Peng Y, Wang HH. Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/β-catenin pathway. Sci Rep. 2020;10:17443.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Yao J, Shi H, Gao B, Zhou H, Zhang Y, Zhao D, Gao S, Wang C, Zhang L. Hsa_circ_0026628 promotes the development of colorectal cancer by targeting SP1 to activate the Wnt/β-catenin pathway. Cell Death Dis. 2021;12:802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen Z, Duan X. hsa_circ_0000177-miR-638-FZD7-Wnt signaling cascade contributes to the malignant behaviors in glioma. DNA Cell Biol. 2018;37:791–7.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou Q, Fu Q, Shaya M, Kugeluke Y, Li S, Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β-catenin signaling pathway. CNS Neurosci Ther. 2022;28:884–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao N, Ye B. Circ-SOX4 drives the tumorigenesis and development of lung adenocarcinoma via sponging miR-1270 and modulating PLAGL2 to activate WNT signaling pathway. Cancer Cell Int. 2020;20:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Peng L, Liu Q, Wu T, Li P, Cai Y, Wei X, Zeng Y, Ye J, Chen P, Huang J. Hsa_circ_0087302, a circular RNA, affects the progression of osteosarcoma via the Wnt/β-catenin signaling pathway. Int J Med Sci. 2022;19:1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu M, Qiu Q, Zhou Q, Li J, Yang J, Zheng C, Luo A, Li X, Zhang H, Cheng X. circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt signaling pathway in ovarian cancer. Mol Cancer. 2022;21:1–19.

    Article  Google Scholar 

  56. Chen F, Feng Z, Zhu J, Liu P, Yang C, Huang R, Deng Z. Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther. 2018;19:1139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, Ma H, Wei D, Sun S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80: 106210.

    Article  CAS  PubMed  Google Scholar 

  58. Lin Q, Ling Y-B, Chen J-W, Zhou C-R, Chen J, Li X, Huang M-S. Circular RNA circCDK13 suppresses cell proliferation, migration and invasion by modulating the JAK/STAT and PI3K/AKT pathways in liver cancer. Int J Oncol. 2018;53:246–56.

    CAS  PubMed  Google Scholar 

  59. Wang F, Wang X, Li J, Lv P, Han M, Li L, Chen Z, Dong L, Wang N, Gu Y. CircNOL10 suppresses breast cancer progression by sponging miR-767-5p to regulate SOCS2/JAK/STAT signaling. J Biomed Sci. 2021;28:1–16.

    Google Scholar 

  60. Gu Y, Wang Y, He L, Zhang J, Zhu X, Liu N, Wang J, Lu T, He L, Tian Y. Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 2021;20:1–20.

    Article  Google Scholar 

  61. Huang C, Li H, Zhou L, Li D. Circ_0005050 promotes the proliferation of oral squamous cell carcinoma and inhibits the apoptosis by activating JAK/STAT3 signaling pathway. Pathol Res Pract. 2022;238: 154058.

    Article  CAS  PubMed  Google Scholar 

  62. Du Y-x, Guo L-x, Pan H-s, Liang Y-m, Li X. Circ_ANKIB1 stabilizes the regulation of miR-19b on SOCS3/STAT3 pathway to promote osteosarcoma cell growth and invasion. Hum Cell. 2020;33:252–60.

    Article  CAS  PubMed  Google Scholar 

  63. Li C, Zhu L, Fu L, Han M, Li Y, Meng Z, Qiu X. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn Pathol. 2021;16:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Molinaro A, Becattini B, Mazzoli A, Bleve A, Radici L, Maxvall I, Sopasakis VR, Molinaro A, Bäckhed F, Solinas G. Insulin-driven PI3K-AKT signaling in the hepatocyte is mediated by redundant PI3Kα and PI3Kβ activities and is promoted by RAS. Cell Metab. 2019;29(1400–1409): e1405.

    Google Scholar 

  65. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170:605–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016;6:1090–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  CAS  Google Scholar 

  68. Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther. 2021;6:400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang T, Wang H, Liu L, Song H, Zhang Y, Wang J, Liu L, Xu T, Fan R, Xu Y. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer. Mol Cancer. 2021;20:1–24.

    Article  Google Scholar 

  70. Wang Y, Yin L, Sun X. CircRNA hsa_circ_0002577 accelerates endometrial cancer progression through activating IGF1R/PI3K/Akt pathway. J Exp Clin Cancer Res. 2020;39:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zheng K, Xie H, Wu W, Wen X, Zeng Z, Shi Y. CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int. 2021;21:1–13.

    Article  Google Scholar 

  72. Jiang W, Zhang C, Zhang X, Sun L, Li J, Zuo J. CircRNA HIPK3 promotes the progression of oral squamous cell carcinoma through upregulation of the NUPR1/PI3K/AKT pathway by sponging miR-637. Ann Transl Med. 2021;9:860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang W, Xie T. Hsa_circ_CSPP1/MiR-361-5p/ITGB1 regulates proliferation and migration of cervical cancer (CC) by modulating the PI3K-Akt signaling pathway. Reprod Sci. 2020;27:132–44.

    Article  PubMed  Google Scholar 

  74. Wu D, Li Y, Xu A, Tang W, Yu B. CircRNA RNA hsa_circ_0008234 promotes colon cancer progression by regulating the miR-338-3p/ETS1 axis and PI3K/AKT/mTOR signaling. Cancers. 2023;15:2068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu C, Ye Q, Ye C, Liu S. circACTR2 attenuates gemcitabine chemoresiatance in pancreatic cancer through PTEN mediated PI3K/AKT signaling pathway. Biol Direct. 2023;18:14.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fang K, Liang S, Liu D, Yi Q, Li Y, Zhu R. Hsa_circ_0003596 enhances the development of cell renal clear cell carcinoma through the miR-502-5p/IGF1/PI3K/AKT axis. J Gene Med. 2023;25:e3562.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou J, Jin S. Circ_0058063 contributed to oral squamous cell carcinoma development by sponging miR-145 and regulating PI3K/AKT pathway. Mol Biotechnol. 2023;65:1–12.

    Article  Google Scholar 

  78. Yu F-X, Zhao B, Guan K-L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang X, Ji C, Hu J, Deng X, Zheng W, Yu Y, Hua K, Zhou X, Fang L. Hsa_circ_0005273 facilitates breast cancer tumorigenesis by regulating YAP1-hippo signaling pathway. J Exp Clin Cancer Res. 2021;40:1–17.

    Article  Google Scholar 

  80. Geng Z, Wang W, Chen H, Mao J, Li Z, Zhou J. Circ_0001667 promotes breast cancer cell proliferation and survival via Hippo signal pathway by regulating TAZ. Cell Biosci. 2019;9:1–10.

    Article  Google Scholar 

  81. Gao P, Yang Y, Li X, Zhao Q, Liu Y, Dong C, Zhang Y, Liu D. Circular RNA hsa_circ_0098181 inhibits metastasis in hepatocellular carcinoma by activating the Hippo signaling pathway via interaction with eEF2. Ann Hepatol. 2023;28:101124.

    Article  CAS  PubMed  Google Scholar 

  82. Peng Q-S, Cheng Y-N, Zhang W-B, Fan H, Mao Q-H, Xu P. circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis. 2020;11:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 2019;18:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, Xiang J, He N, Hu Z, Wang F. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer. 2023;22:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu P, Hou X, Peng M, Deng X, Yan Q, Fan C, Mo Y, Wang Y, Li Z, Wang F. Circular RNA circRILPL1 promotes nasopharyngeal carcinoma malignant progression by activating the Hippo-YAP signaling pathway. Cell Death Differ. 2023;30:1–16.

    Article  ADS  CAS  Google Scholar 

  86. Wang Q, Feng J, Tang L. Non-coding RNA related to MAPK signaling pathway in liver cancer. Int J Mol Sci. 2022;23:11908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He J, Huang Z, He M, Liao J, Zhang Q, Wang S, Xie L, Ouyang L, Koeffler HP, Yin D. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer. 2020;19:1–17.

    Article  Google Scholar 

  88. Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 2021;20:1–18.

    Article  Google Scholar 

  89. Liu T, Zhou L, He Z, Chen Y, Jiang X, Xu J, Jiang J. Circular RNA hsa_circ_0006117 facilitates pancreatic cancer progression by regulating the miR-96–5p/KRAS/MAPK signaling pathway. J Oncol. 2021;2021:1–16.

    Article  Google Scholar 

  90. Sun M, Zhao W, Chen Z, Li M, Li S, Wu B, Bu R. Circular RNA CEP128 promotes bladder cancer progression by regulating Mir-145-5p/Myd88 via MAPK signaling pathway. Int J Cancer. 2019;145:2170–81.

    Article  CAS  PubMed  Google Scholar 

  91. Wang S, Li W, Yang L, Yuan J, Wang L, Li N, Zhao H. CircPVT1 facilitates the progression of oral squamous cell carcinoma by regulating miR-143-3p/SLC7A11 axis through MAPK signaling pathway. Funct Integr Genom. 2022;22:891–903.

    Article  CAS  Google Scholar 

  92. Lyu Y, Tan B, Li L, Liang R, Lei K, Wang K, Wu D, Lin H, Wang M. A novel protein encoded by circUBE4B promotes progression of esophageal squamous cell carcinoma by augmenting MAPK/ERK signaling. Cell Death Dis. 2023;14:346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang B, Chen H, Deng Y, Chen H, Xing L, Guo Y, Wang M, Chen J. CircDNAJC11 interacts with TAF15 to promote breast cancer progression via enhancing MAPK6 expression and activating the MAPK signaling pathway. J Transl Med. 2023;21:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu F, Sun G, Zheng W, Tang W, Cheng Y, Wu L, Li X, Tao J, Ma S, Cao H. circCORO1C promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing the expression of PD-L1 through NF-κB pathway. J Clin Lab Anal. 2021;35: e24003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen J, Yang X, Liu R, Wen C, Wang H. Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-κB pathway. Cell Death Dis. 2020;11:788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu Y, Zhang S, Liao X, Li M, Chen S, Li X, Wu X, Yang M, Tang M, Hu Y. Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling. Mol Cancer. 2021;20:1–18.

    Article  Google Scholar 

  98. Zhou Q, Sun Y. Circular RNA cMras suppresses the progression of lung adenocarcinoma through ABHD5/ATGL axis using NF-κB signaling pathway. Cancer Biother Radiopharm. 2023;38:336–46.

    CAS  PubMed  Google Scholar 

  99. Ai Y, Song J, Wei H, Tang Z, Li X, Lv X, Luo H, Wu S, Zou C. circ_0001461 promotes oral squamous cell carcinoma progression through miR-145/TLR4/NF-κB axis. Biochem Biophys Res Commun. 2021;566:108–14.

    Article  CAS  PubMed  Google Scholar 

  100. Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transduction network. Sci signal. 2012;5:re6–re6.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang L, Li B, Yi X, Xiao X, Zheng Q, Ma L. Circ_0036412 affects the proliferation and cell cycle of hepatocellular carcinoma via hedgehog signaling pathway. J Transl Med. 2022;20:1–18.

    PubMed  PubMed Central  Google Scholar 

  102. Zhang P, Gao H, Yan R, Yu L, Xia C, Yang D. has_circ_0070512 promotes prostate cancer progression by regulating the miR-338-3p/hedgehog signaling pathway. Cancer Sci. 2023;114:1491.

    Article  CAS  PubMed  Google Scholar 

  103. Chen J, Zhou X, Yang J, Sun Q, Liu Y, Li N, Zhang Z, Xu H. Circ-GLI1 promotes metastasis in melanoma through interacting with p70S6K2 to activate Hedgehog/GLI1 and Wnt/β-catenin pathways and up-regulate Cyr61. Cell Death Dis. 2020;11:596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ye G, Pan R, Zhu L, Zhou D. Circ_DCAF6 potentiates cell stemness and growth in breast cancer through GLI1-Hedgehog pathway. Exp Mol Pathol. 2020;116: 104492.

    Article  CAS  PubMed  Google Scholar 

  105. Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002;1:466–76.

    Article  PubMed  Google Scholar 

  106. Katoh M, Katoh M. Precision medicine for human cancers with notch signaling dysregulation. Int J Mol Med. 2020;45:279–97.

    CAS  PubMed  Google Scholar 

  107. Hui Y, Wenguang Y, Wei S, Haoran W, Shanglei N, Ju L. circSLC4A7 accelerates stemness and progression of gastric cancer by interacting with HSP90 to activate NOTCH1 signaling pathway. Cell Death Dis. 2023;14:452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via notch signaling pathway. Front Mol Neurosci. 2018;11:225.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wu H-B, Huang S-S, Lu C-G, Tian S-D, Chen M. CircAPLP2 regulates the proliferation and metastasis of colorectal cancer by targeting miR-101-3p to activate the notch signalling pathway. Am J Transl Res. 2020;12:2554.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as therapeutic agents and targets. Front Physiol. 2018;9:1262.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen L-L, Cherry S, Wilusz JE. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell. 2017;68(940–954): e943.

    Google Scholar 

  112. Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H, Kong D. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 2018;119:440–6.

    Article  CAS  PubMed  Google Scholar 

  113. Meganck RM, Liu J, Hale AE, Simon KE, Fanous MM, Vincent HA, Wilusz JE, Moorman NJ, Marzluff WF, Asokan A. Engineering highly efficient backsplicing and translation of synthetic circRNAs. Mol Ther-Nucleic Acids. 2021;23:821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pamudurti NR, Patop IL, Krishnamoorthy A, Ashwal-Fluss R, Bartok O, Kadener S. An in vivo strategy for knockdown of circular RNAs. Cell Discov. 2020;6:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Okano M, Oshi M, Butash AL, Asaoka M, Katsuta E, Peng X, Qi Q, Yan L, Takabe K. Estrogen receptor positive breast cancer with high expression of androgen receptor has less cytolytic activity and worse response to neoadjuvant chemotherapy but better survival. Int J Mol Sci. 2019;20:2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hu J, Peng X, Du W, Huang Y, Zhang C, Zhang X. circSLC6A6 sponges miR-497-5p to promote endometrial cancer progression via the PI4KB/hedgehog axis. J Immunol Res. 2021;2021:1–13.

    Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ROS, SISA-H, BDO, AH: Conceptualization, Writing—Original Draft. KHO, MJA, SSJ: Conceptualization, Writing—Review & editing, Visualization. A Alawadi, A Alsalamy: Conceptualization. SAJ: Supervision.

Corresponding author

Correspondence to Saade Abdalkareem Jasim.

Ethics declarations

Conflict of interests

The authors have not disclosed any competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, R.O., Al-Hawary, S.I.S., Jasim, S.A. et al. A therapeutical insight into the correlation between circRNAs and signaling pathways involved in cancer pathogenesis. Med Oncol 41, 69 (2024). https://doi.org/10.1007/s12032-023-02275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02275-4

Keywords

Navigation