Skip to main content
Log in

Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the influence of surfactant on the specific capacitance of nickel oxide nanoparticles (NiO NPs) for supercapacitor applications is studied. We synthesized nickel oxide (NiO) and nickel oxide with sodium dodecyl sulphate (NiO/SDS) NPs using solution combustion synthesis SDS is significant in synthesizing nanomaterials that allow control over particle size, shape and stability. They can enhance the performance of nanoscale materials as energy storage materials by improving their electrochemical activity and charge transfer kinetics. The synthesized material’s performance was further characterized using X-ray diffraction (XRD), UV–vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive spectroscopy and transmission electron microscopy. The typical crystalline sizes of NiO and NiO/SDS nanomaterials were 28 and 22 nm, respectively. XRD analysis reveals that the structure of NiO is FCC. In addition, the electrochemical performance of the active material was investigated in the electrolyte 6M with potassium hydroxide. Accordingly, specific capacitances of NiO and NiO/SDS are observed as 955 and 1024 F g–1 at a 2 mV s–1 scan rate. It was established that NiO/SDS NPs offer considerably superior electrochemical performance due to the surfactant SDS’s inclusion in contrast to NiO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kate R S, Khalate S A and Deokate R J 2018 J. Alloys Compd. 734 89

    Article  CAS  Google Scholar 

  2. Yadav A A and Chavan U J 2016 J. Electroanal. Chem. 782 36

    Article  CAS  Google Scholar 

  3. Yi T F, Wei T T, Mei J, Zhang W, Zhu Y, Liu Y G et al 2020 Adv. Sustain. Syst. 4 1900137

    Article  CAS  Google Scholar 

  4. Zhu X, Dai H, Hu J, Ding L and Jiang L 2012 J. Power Sources 203 243

    Article  CAS  Google Scholar 

  5. Yadav A A 2016 J. Mater. Sci.: Mater. Electron 27 6985

    CAS  Google Scholar 

  6. Yuan G, Liu Y, Yue M, Li H, Liu E and Huang Y 2014 Ceram. Int. 40 9101

    Article  CAS  Google Scholar 

  7. Yang Z, Xu F, Zhang W, Mei Z, Pei B and Zhu X 2014 J. Power Sources 246 24

    Article  ADS  CAS  Google Scholar 

  8. Jeon S, Jeong J H, Yoo H, Yu H K, Kim B H and Kim M H 2020 ACS Appl. Nano Mater. 3 3847

    Article  CAS  Google Scholar 

  9. Beknalkar S A, Teli A M, Harale N S, Patil D S, Pawar S A and Shin J C 2021 Appl. Surf. Sci. 546 149102

    Article  CAS  Google Scholar 

  10. Rakesh Kumar T, Shilpa Chakra C H, Madhuri S, Sai Ram E and Ravi K 2021 J. Mater. Sci.: Mater. Electron 32 20374

    CAS  Google Scholar 

  11. Yekkaluri S R, Shireesha K, Divya V, Rakesh Kumar T, Shilpa Chakra C H, Bala Narsaiah T et al 2022 Appl. Surf. Sci. Adv. 12 100326

    Article  Google Scholar 

  12. Shireesha K and Shilpa Chakra C H 2022 Appl. Surf. Sci. Adv. 12 100329

    Article  Google Scholar 

  13. Divya V, Shireesha K, Shireesha V and Shilpa Chakra C H 2021 Mater. Today: Proc. 47 1760

    Google Scholar 

  14. Shivani S, Shireesha K, Divya V, Sriram Ankith V, Sugunakar Reddy R, Shilpa Chakra C H et al 2022 Appl. Surf. Sci. Adv. 12 100331

    Article  Google Scholar 

  15. Dan W, Xiubo X, Yuping Z, Dongmei Z, Wei D, Xiaoyu Z et al 2020 Front. Mater. 7 1

    Article  Google Scholar 

  16. Zou H, Wang C, Feng Z, Yang W and Chen S 2022 J. Porous Mater. 30 965

  17. Saravanakumar B, Ramachandran S P, Ravi G, Ganesh V, Ramesh K G and Yuvakkumar R 2019 Vacuum 168 108798

    Article  ADS  CAS  Google Scholar 

  18. Han H, Sial Q A, Kalanur S S and Seo H 2020 Ceram. Int. 46 15631

    Article  CAS  Google Scholar 

  19. Vyas M, Pareek K, Rohan R and Kuma P 2019 Ionics 25 5991

    Article  CAS  Google Scholar 

  20. Zheng Y, Ding H and Zhang M 2009 Mater. Res. Bull. 44 403

    Article  CAS  Google Scholar 

  21. Chen J, Peng X, Song L, Zhang L, Liu X and Luo J 2018 R. Soc. Open Sci. 5 180842

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kate R S and Deokate R J 2020 Mater. Sci. Energy Technol. 3 830

    CAS  Google Scholar 

  23. Lota K Sierczynska A and Lota G 2010 Int. J. Electrochem. 2011 6

  24. Sk M M, Yue C Y, Ghosh K and Jena R K 2016 J. Power Sources 308 121

    Article  ADS  CAS  Google Scholar 

  25. Wu M S, Huang Y A, Yang C H and Jow J J 2007 Int. J. Hydrog. Energy 32 4153

    Article  CAS  Google Scholar 

  26. Marand N A, Masoudpanah S M, Alamolhoda S and Bafghi M S 2021 J. Energy Storage 39 102637

    Article  Google Scholar 

  27. Meguerdichian A G, Tasnim H, Tabassum L, Kapuge T K, Amin A S and Shakil M R 2020 Micropor Mesopor. Mater. 295 109750

    Article  CAS  Google Scholar 

  28. Balamurugan S, Linda Philip A J and Vidya R S 2016 J. Supercond. Nov. Magn. 29 2207

    Article  CAS  Google Scholar 

  29. Salwa M and Morsy I 2014 Int. J. Curr. Microbiol. Appl. Sci. 3 237

    Google Scholar 

  30. Ashok A, Kumar A and Tarlochan F 2020 Colloidal metal oxide nanoparticles p 247

  31. Shireesha K, Rakesh Kumar T, Rajani T, Shilpa Chakra C H, Mamatha Kumari M, Divya V et al 2021 Crystals 11 1144

    Article  CAS  Google Scholar 

  32. Shireesha K, Divya V, Pranitha G, Ashok Ch, Shilpa Chakra Ch and Himabindu V 2021 Mater. Technol. 37 1864

    ADS  Google Scholar 

  33. Fang W, Yang S, QiYuan T, Charlton A and Cng Sun R 2017 Ind. Eng. Chem. Res. 56 9551

    Article  CAS  Google Scholar 

  34. Kolathodi M S, Palei M and Natarajan T S 2015 J. Mater. Chem. A 3 7513

    Article  CAS  Google Scholar 

  35. Azharudeen A M, Karthiga R, Rajarajan M and Suganthi A 2020 Arab. J. Chem. 13 4053

    Article  CAS  Google Scholar 

  36. Abdallah A M, Basma H and Awad R 2019 Mod. Appl. Sci. 13 99

    Article  CAS  Google Scholar 

  37. Pezeshkvar T, Norouzi B, Moradian M and Mirabi A 2022 J. Solid State Electrochem. 26 1479

    Article  CAS  Google Scholar 

  38. Umeshbabu E and Ranga Rao G 2016 J. Colloid Interface Sci. 472 210

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Muto A, Sasada Y, Bhaskar T and Sakata Y 2007 Electrochem. Commun. 75 598

    CAS  Google Scholar 

  40. Jahromia S P, Pandikumar A, Goha B T, Lima Y S, Basirunb W J, Lim H N et al 2015 RSC Adv. 5 14010

    Article  ADS  Google Scholar 

  41. Ouyang Y, Xia X, Ye H, Wang L, Jiao X, Lei W et al 2018 ACS Appl. Mater. Interfaces 10 3549

    Article  CAS  PubMed  Google Scholar 

  42. Vidhyadharan B, Mohd Zain N K, Izwan Misnon I, Abd Aziz R, Ismail J, Yusoff M et al 2014 J. Alloys Compd. 610 143

    Article  CAS  Google Scholar 

  43. Navale S K, Mali V V, Pawar S A, Mane R S, Naushad M, Stadler F J et al 2015 RSC Adv. 5 51961

    Article  ADS  CAS  Google Scholar 

  44. Cheng G, Yan Y and Chen R 2015 New J. Chem. 39 676

    Article  CAS  Google Scholar 

  45. Divya V, Shireesha K and Shilpa Chakra C H 2021 Synth. Met. 282 116956

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding support from DST SYST (File No.: SP/YO/2019/1599); DST SERB (File No. CRG/2019/007040); and DST Women Scientist (WOS-A; sanction no. SR/WOS-A/CS-13/2019), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C H Shilpa Chakra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John Steven Wesley, K., Shireesha, K., Divya, V. et al. Impact of surfactant on specific capacitance of nickel oxide nanoparticles for supercapacitor application. Bull Mater Sci 47, 30 (2024). https://doi.org/10.1007/s12034-023-03101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03101-3

Keywords

Navigation