Skip to main content
Log in

Preparation of Polymer-Based Amino Acid Stationary Phase and Its Application for Mixed-Mode Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Polymer microspheres have received attention because of their excellent properties. In this work, a polymer matrix zwitterionic amino acid stationary phase was prepared. Polyglycidyl methacrylate divinylbenzene (PGMA-DVB) microspheres was used as the matrix and successful modification with L-phenylalanine by ring-opening reaction of epoxy groups on the surface of PGMA-DVB microsphere matrix. The stationary phase was characterized by scanning electron microscopy, Fourier-transform infrared spectra, and elemental analysis. The phenylalanine-modified stationary phase was used in RPLC/HILIC mixed-mode chromatography for the separation of alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, nucleosides and nucleic acids and etc. as probes, respectively. The good spatial selectivity of the stationary phase was demonstrated by the separation of biphenyl isomers. The prepared stationary phase showed good stability in alkaline condition (pH = 10) and low swelling in organic solvent mobile phase. Meanwhile, the stationary phase also showed good performance in the separation of different vitamins (Rs > 5.3), and the separation and detection of PAHs in river water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data supporting the findings of this article are available in the manuscript and the electronic supplementary material.

References

  1. Hu Y, Kadotani J, Kuwahara Y, Ihara H, Takafuji M (2023) Zwitterionic polymer-terminated porous silica stationary phases for highly selective separation in hydrophilic interaction chromatography. J Chromatogr A 1693:463885. https://doi.org/10.1016/j.chroma.2023.463885

    Article  CAS  PubMed  Google Scholar 

  2. Yang Z, Gao M, Li Z, Zhang F, Zhang S, Yang B (2019) A poly(glycidylmethacrylate-divinylbenzene)-based anion exchanger for ion chromatography. J Chromatogr A 1596:79–83. https://doi.org/10.1016/j.chroma.2019.02.062

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Dai Q, Qiao X, Yu C, Qin X, Yan H (2016) Mixed-mode chromatographic stationary phases: recent advancements and its applications for high-performance liquid chromatography. TrAC Trends Anal Chem 82:143–163. https://doi.org/10.1016/j.trac.2016.05.011

    Article  CAS  Google Scholar 

  4. P Kozlik, J Vaclova, K Kalikova (2021) Mixed-mode hydrophilic interaction/ion-exchange liquid chromatography—separation potential in peptide analysis. Microchem J 165. https://doi.org/10.1016/j.microc.2021.106158

  5. Guo Z, Jin Y, Liang T, Liu Y, Xu Q, Liang X, Lei A (2009) Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a “Click beta-cyclodextrin” stationary phase. J Chromatogr A 1216(2):257–263. https://doi.org/10.1016/j.chroma.2008.11.071

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y-X, Zhao K-L, Yang F, Tian L, Yang Y (2015) Q Bai (2015) Protein separation using a novel silica-based RPLC/IEC stationary phase modified with N-methylimidazolium ionic liquid. Chin Chem Lett 26(8):988–992. https://doi.org/10.1016/j.cclet.2015.05.001

    Article  CAS  Google Scholar 

  7. Zhang W, Feng Y, Pan L, Zhang G, Guo Y, Zhao W, Xie Z, Zhang S (2023) Silica microparticles modified with ionic liquid bonded chitosan as hydrophilic moieties for preparation of high-performance liquid chromatographic stationary phases. Mikrochim Acta 190(5):176. https://doi.org/10.1007/s00604-023-05755-6

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Li Z, Zhang F, Geng H, Yang B (2020) A polymer-based zwitterionic stationary phase for hydrophilic interaction chromatography. Talanta 216:120927. https://doi.org/10.1016/j.talanta.2020.120927

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Jiang Y, Zhang F, Li Z, Yang B (2021) Preparation and evaluation of a polymer-based sulfobetaine zwitterionic stationary phase. J Chromatogr A 1649:462229. https://doi.org/10.1016/j.chroma.2021.462229

    Article  CAS  PubMed  Google Scholar 

  10. Wei ZQ, Wang Z, Hong RY, Wang YF (2017) Monodisperse plum-like sulfonated PGMA-DVB microspheres as a new ion exchange resin. J Appl Polym Sci 134(26). https://doi.org/10.1002/app.44994

  11. Zhang K, Li Q, Fan H, Li S, Su Y, Zhao L, Huang Y, Wang D, Zhang Z, Su Z, Ma G (2017) Multi-layer dextran-decorated poly(glycidyl methacrylate)-co-divinyl benzene copolymer matrices enabling efficient protein chromatographic separation. React Funct Polym 112:45–52. https://doi.org/10.1016/j.reactfunctpolym.2017.01.003

    Article  CAS  Google Scholar 

  12. Pang L, Xue T, Cong H, Shen Y, Yu B (2020) Preparation and application of PGMA-DVB microspheres via surface-modification with quaternary and phenylboronic acid moiety. Colloids Surf B Biointerfaces 188:110807. https://doi.org/10.1016/j.colsurfb.2020.110807

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Liu Z, Li Q, Wang Y, Shah T, Ahmad M, Zhang Q, Zhang B (2021) Wrinkled Fe(3)O(4)@C magnetic composite microspheres: regulation of magnetic content and their microwave absorbing performance. J Colloid Interface Sci 601:397–410. https://doi.org/10.1016/j.jcis.2021.05.153

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yang Z, Li Z, Zhang F, Yang B, Zhang S (2019) A novel hydrophilic polymer-based anion exchanger grafted by quaternized polyethyleneimine for ion chromatography. Talanta 197:199–203. https://doi.org/10.1016/j.talanta.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  15. Yu B, Zhang H, Cong H, Gu C, Gao L, Yang B, Usman M (2017) Diazoresin modified monodisperse porous poly(glycidylmethacrylate-co-divinylbenzene) microspheres as the stationary phase for high performance liquid chromatography. N J Chem 41(11):4637–4643. https://doi.org/10.1039/c6nj04001b

    Article  CAS  Google Scholar 

  16. Zhang R, Li Q, Gao Y, Li J, Huang Y, Song C, Zhou W, Ma G, Su Z (2014) Hydrophilic modification gigaporous resins with poly(ethylenimine) for high-throughput proteins ion-exchange chromatography. J Chromatogr A 1343:109–118. https://doi.org/10.1016/j.chroma.2014.03.064

    Article  CAS  PubMed  Google Scholar 

  17. Z Li, X Chen, F Zhang, B Yang (2022) A strong anion exchanger of poly(glycidyl methacrylate-divinylbenzene) substrate functionalized with cationic quaternary ammonium monomer. J Sep Sci. https://doi.org/10.1002/jssc.202200166

  18. Shen A, Guo Z, Yu L, Cao L, Liang X (2011) A novel zwitterionic HILIC stationary phase based on “thiol-ene” click chemistry between cysteine and vinyl silica. Chem Commun (Camb) 47(15):4550–4552. https://doi.org/10.1039/c1cc10421g

    Article  CAS  PubMed  Google Scholar 

  19. Farhadpour M, Maghari S, Rezadoost H, Bagheri M, Ghassempour A (2020) A click tyrosine zwitterionic stationary phases for hydrophilic interaction liquid chromatography. J Chromatogr A 1621:461045. https://doi.org/10.1016/j.chroma.2020.461045

    Article  CAS  PubMed  Google Scholar 

  20. Asnin L, Hercikova J, Lindner W, Klimova Y, Ziganshina D, Reshetova E, Kohout M (2022) Chiral separation of dipeptides on Cinchona-based zwitterionic chiral stationary phases under buffer-free reversed-phase conditions. Chirality 34(8):1065–1077. https://doi.org/10.1002/chir.23471

    Article  CAS  PubMed  Google Scholar 

  21. Bocian S, Skoczylas M, Buszewski B (2016) Amino acids, peptides, and proteins as chemically bonded stationary phases—a review. J Sep Sci 39(1):83–92. https://doi.org/10.1002/jssc.201500825

    Article  CAS  PubMed  Google Scholar 

  22. Yu M, Wang Q, Zhang M, Deng Q, Chen D (2017) Facile fabrication of raspberry-like composite microspheres for the construction of superhydrophobic films and applications in highly efficient oil–water separation. RSC Adv 7(63):39471–39479. https://doi.org/10.1039/c7ra07250c

    Article  ADS  CAS  Google Scholar 

  23. Luo P, Peng J, Peng H, Zhang Z, Chen J, Fan K, Wang X (2023) Preparation of three regioisomeric ionic liquid stationary phases and investigation of their retention behavior. J Chromatogr A 1689:463773. https://doi.org/10.1016/j.chroma.2023.463773

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi H, Masuda Y, Takaya H, Kubo T, Otsuka K (2022) Separation of glycoproteins based on sugar chains using novel stationary phases modified with poly(ethylene glycol)-conjugated boronic-acid derivatives. Anal Chem. https://doi.org/10.1021/acs.analchem.2c01002

  25. Nevejans F, Verzele M (1985) Swelling propensity (SP factor) of semi-rigid chromatographic packing materials. J Chromatogr A 350:145–150. https://doi.org/10.1016/S0021-9673(01)93514-9

    Article  CAS  Google Scholar 

  26. Rahayu A, Lim LW, Takeuchi T (2015) Polymer monolithic methacrylate base modified with tosylated-polyethylene glycol monomethyl ether as a stationary phase for capillary liquid chromatography. Talanta 134:232–238. https://doi.org/10.1016/j.talanta.2014.10.060

    Article  CAS  PubMed  Google Scholar 

  27. Lin SL, Fuh MR (2019) Separation of inorganic anions by capillary ion chromatography with UV detection using poly(vinylimidazole-co-ethylene dimethacrylate) monolithic column. Talanta 194:73–78. https://doi.org/10.1016/j.talanta.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  28. Chirita RI, West C, Zubrzycki S, Finaru AL, Elfakir C (2011) Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J Chromatogr A 1218(35):5939–5963. https://doi.org/10.1016/j.chroma.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  29. Zuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Heberger K (2019) Column characterization and selection systems in reversed-phase high-performance liquid chromatography. Chem Rev 119(6):3674–3729. https://doi.org/10.1021/acs.chemrev.8b00246

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Z-Y, Ni H-G (2024) Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China. Sci Total Environ 906. https://doi.org/10.1016/j.scitotenv.2023.167590

  31. Cao Y, Wang J, Xin M, Wang B, Lin C (2024) Spatial distribution and partition of polycyclic aromatic hydrocarbons (PAHs) in the water and sediment of the southern Bohai Sea: yellow River and PAH property influences. Water Res 248. https://doi.org/10.1016/j.watres.2023.120873

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Hanlin Zeng: conceptualization, investigation, writing – original draft. Jingdong Peng: supervision, funding acquisition. Huanjun Peng: formal analysis, resources. Xiang Wang: Data curation. Zilong Zhang: software. Hanqi Yang: Visualization. Jiayu Yu: validation. Jiajia Wu: formal analysis

Corresponding author

Correspondence to Jingdong Peng.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 838 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Peng, J., Peng, H. et al. Preparation of Polymer-Based Amino Acid Stationary Phase and Its Application for Mixed-Mode Chromatography. Chromatographia 87, 147–157 (2024). https://doi.org/10.1007/s10337-024-04311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-024-04311-5

Keywords

Navigation