Skip to main content
Log in

Interplay of surface and bulk elasticity in morphological stability of ultra-thin film coatings

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper explores the interplay of surface and bulk elasticity on the evolution of surface relief within nanosized thin-film coatings, driven by the relaxation of misfit stresses through surface diffusion mechanism. The proposed theoretical approach incorporates the constitutive equations of surface elasticity theory developed by Gurtin and Murdoch into the Asaro–Tiller–Grinfeld model of morphological instability, which takes into account the stress sensitivity of the local gradient in chemical potential driving mass transport along the perturbed surface. Linear stability analysis, based on the solution of the linearized evolution equation representing the amplitude change of surface perturbation with time, predicts the conditions leading to the early growth of surface topological defects. These conditions depend on factors, such as the initial shape and wavelength of the surface undulations, misfit stresses, tension at the surface and interface, and the elastic properties governing the deformation of the surface, interface, film, and substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.A., Morozov, N.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45, 331–342 (2010)

    Article  ADS  Google Scholar 

  2. Andreev, A.F., Kosevich, Y.A.: Capillary phenomena in the theory of elasticity. Zh. Eksp. Teor. Fiz. 81, 1435–1443 (1981)

    CAS  Google Scholar 

  3. Angheluta, L., Jettestuen, E., Mathiesen, J., Renard, F., Jamtveit, B.: Stress-driven phase transformation and the roughening of solid-solid interfaces. Phys. Rev. Lett. 100(9), 096105 (2007)

    Article  ADS  Google Scholar 

  4. Angheluta, L., Jettestuen, E., Mathiesen, J.: Thermodynamics and roughening of solid–solid interfaces. Phys. Rev. 79(3), 031601 (2008)

    Google Scholar 

  5. Angheluta, L., Mathiesen, J.: Thermodynamics of stressed solids: slow deformation and roughening of material interfaces. Eur. Phys. J. Spec. Top. 178, 123–132 (2009)

    Article  Google Scholar 

  6. Angenent, S.B., Gurtin, M.E.: Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108, 323–391 (1989)

    Article  MathSciNet  Google Scholar 

  7. Aqua, J., Frisch, T.: Influence of surface energy anisotropy on the dynamics of quantum dot growth. Phys. Rev. B 82, 085322 (2010)

    Article  ADS  Google Scholar 

  8. Asaro, R.J., Tiller, W.A.: Interface morphology development during stress-corrosion cracking: Part I. Via surface diffusion. Metall. Mater. Trans. 3, 1789–1796 (1972)

    Article  ADS  CAS  Google Scholar 

  9. Berbezier, I., Ronda, A., Aqua, J.-N., Favre, L., Frisch, T.: SiGe nanostructures: from fundamental to applications. In: Granitzer, P., Rumpf, K. (eds.) Nanostructured Semiconductors: From Basic Research to Applications, pp. 165–245. Pan Stanford Publishing, New York (2014)

    Google Scholar 

  10. Berréhar, J., Caroli, C., Lapersonne-Meyer, C., Schott, M.: Surface patterns on single-crystal films under uniaxial stress: Experimental evidence for the Grinfeld instability. Phys. Rev. B. 46, 13487–13495 (1992)

    Article  ADS  Google Scholar 

  11. Betechtin, V.I., Gorobey, N.N., Korsukov, V.E., Lukyanenko, A.S., Obidov, B.A.: Peculiarities of the defect formation on deformed Si(111) surface. In: Proceedings of Sixth International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering 5127 (2003)

  12. Blinowski, A.: A new approach to problems of surface phenomena in an elastic solid. Proc. Vib. Probl. 11(4), 383–397 (1970)

    Google Scholar 

  13. Bochkarev, A.O., Grekov, M.A.: Influence of surface stresses on the nanoplane stiffness and stability in the Kirsch problem. Phys. Mesomech. 22(3), 209–223 (2019)

    Article  Google Scholar 

  14. Bouville, M., Hu, S., Chen, L., Chi, D., Srolovitz, D.J.: Phase-field model for grain boundary grooving in multi-component thin films. Model. Simul. Mat. Sci. Eng. 14, 433–443 (2005)

    Article  ADS  Google Scholar 

  15. Bowley, R.M., Noziéres, P.: The effect of heat currents on the stability of the liquid solid interface. J. Phys. I(2), 433–441 (1992)

    Google Scholar 

  16. Buehler, M.J.: Atomistic Modelling of Materials Failure. Springer, Boston (2008)

    Book  Google Scholar 

  17. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  CAS  Google Scholar 

  18. Cahn, J.W.: Surface stress and the chemical equilibrium of small crystals—I. the case of the isotropic surface. Acta Metall. 28, 1333–1338 (1980)

    Article  CAS  Google Scholar 

  19. Cahn, J.W., Larché, F.C.: Surface stress and the chemical equilibrium of small crystals—II. Solid particles embedded in a solid matrix. Acta Metall. 30, 51–56 (1982)

    Article  CAS  Google Scholar 

  20. Cammarata, R.C.: Mechanical properties of nanocomposite thin films. Thin Solid Films 240, 82–87 (1994)

    Article  ADS  CAS  Google Scholar 

  21. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Cammarata, R.C.: Surface and interface stress effects on the growth of thin films. J. Electron. Mater. 26, 966–968 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Cammarata, R.C.: Generalized thermodynamics of surfaces with applications to small solid systems. J. Phys. C Solid State Phys. 61, 1–75 (2009)

    Article  CAS  Google Scholar 

  24. Chatzigeorgiou, G., Meraghni, F., Javili, A.: Generalized interfacial energy and size effects in composites. J. Mech. Phys. Solids 106, 257–282 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chiu, C.: The self-assembly of uniform heteroepitaxial islands. Appl. Phys. Lett. 75, 3473–3475 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Chiu, C., Gao, H.: Stress singularities along a cycloid rough surface. Int. J. Solids Struct. 30, 2983–3012 (1993)

    Article  Google Scholar 

  27. Chiu, C., Gao, H.: A numerical study of stress controlled surface diffusion during epitaxial film growth. MRS Proc. 356, 33–44 (1994)

    Article  Google Scholar 

  28. Colin, J.M., Grilhé, J., Junqua, N.: Surface instabilities of a stressed cylindrical whisker. Philos. Mag. 76, 793–805 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Colin, J.M., Grilhé, J.: Nonlinear effects of the stress driven rearrangement instability of solid free surfaces. J. Elast. 77, 177–185 (2004)

    Article  MathSciNet  Google Scholar 

  30. Collins, J.B., Levine, H.: Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B 31, 6119 (1985)

    Article  ADS  CAS  Google Scholar 

  31. Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  ADS  Google Scholar 

  32. Daruka, I., Tersoff, J., Barabási, A.: Shape transition in growth of strained islands. Phys. Rev. Lett. 82, 2753–2756 (1999)

    Article  ADS  CAS  Google Scholar 

  33. Dasgupta, D., Sfyris, G.I., Gungor, M.R., Maroudas, D.: Surface morphological stabilization of stressed crystalline solids by simultaneous action of applied electric and thermal fields. Appl. Phys. Lett. 100, 141902 (2012)

    Article  ADS  Google Scholar 

  34. Davi, F., Gurtin, M.E.: On the motion of a phase interface by surface diffusion. Z. Angew. Math. Phys. 41, 782–811 (1990)

    Article  MathSciNet  Google Scholar 

  35. Duan, H., Weissmüller, J., Wang, Y.R.: Instabilities of core-shell heterostructured cylinders due to diffusions and epitaxy: spheroidization and blossom of nanowires. J. Mech. Phys. Solids 56, 1831–1851 (2008)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Du, L., Dasgupta, D., Maroudas, D.: Stabilization of the surface morphology of stressed solids using thermal gradients. Appl. Phys. Lett. 104, 181901 (2014)

    Article  ADS  Google Scholar 

  37. Du, L., Dasgupta, D., Maroudas, D.: Stabilization of the surface morphology of stressed solids using simultaneously applied electric fields and thermal gradients. J. Appl. Phys. 116, 173501 (2014)

    Article  ADS  Google Scholar 

  38. Du, L., Dasgupta, D., Maroudas, D.: Weakly nonlinear theory of secondary rippling instability in surfaces of stressed solids. J. Appl. Phys. 118, 035303 (2015)

    Article  ADS  Google Scholar 

  39. Du, D., Srolovitz, D.: Electrostatic field-induced surface instability. Appl. Phys. Lett. 85, 4917 (2004)

    Article  ADS  CAS  Google Scholar 

  40. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  Google Scholar 

  41. Eremeyev, V.A., Sharma, B.L.: Anti-plane surface waves in media with surface structure: discrete vs. continuum model. Int. J. Eng. Sci. 143, 33–38 (2019)

    Article  MathSciNet  Google Scholar 

  42. Evstafeva, I., Pronina, Y.: On the mechanochemical dissolution of shells and its temperature dependence: discussion of different models. Int. J. Eng. Sci. 190, 103889 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  43. Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53, 481–527 (2008)

    Article  CAS  Google Scholar 

  44. Freund, L.B.: Evolution of waviness on the surface of a strained elastic solid due to stress-driven diffusion. Int. J. Solids Struct. 28, 911–923 (1995)

    Article  Google Scholar 

  45. Freund, L.B.: A surface chemical potential for elastic solids. J. Mech. Phys. Solids 46, 1835–1844 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Freund, L.B., Jónsdóttir, F.: Instability of a biaxially stressed thin film on a substrate due to material diffusion over its free surface. J. Mech. Phys. Solids 41, 1245–1264 (1993)

    Article  ADS  Google Scholar 

  47. Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. University Press, Cambridge (2003)

    Google Scholar 

  48. Fried, E., Gurtin, M.E.: A unified treatment of evolving interfaces accounting for small deformations and atomic transport: grain-boundaries, phase transitions, epitaxy. Adv. Appl. Mech. 40, 1–177 (2004)

    Article  Google Scholar 

  49. Gao, H.: Morphologic instability along surfaces of anisotropic solids. In: Wu, J.J., Ting, T.C.T., Barnettm, D.M. (eds.) Modern Theory of Anisotropic Elasticity and Applications, pp. 139–150. SIAM, Philadelphia (1991)

    Google Scholar 

  50. Gao, H.: A boundary perturbation analysis for elastic inclusions and interfaces. Int. J. Solids Struct. 28(703–725), 703–725 (1991)

    Article  Google Scholar 

  51. Gao, H.: Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. J. Mech. Phys. Solids 42, 741–772 (1994)

    Article  ADS  Google Scholar 

  52. Gao, H., Nix, W.D.: Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173–209 (1999)

    Article  ADS  CAS  Google Scholar 

  53. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs. Longmans-Green, London (1906)

    Google Scholar 

  54. Gill, S.P.A.: Self-organized growth on strained substrates: the influence of anisotropic strain, surface energy and surface diffusivity. Thin Solid Films 423, 136–145 (2003)

    Article  ADS  CAS  Google Scholar 

  55. Gill, S.P.A.: An analytical model for the growth of quantum dots on ultrathin substrates. Appl. Phys. Lett. 98, 161910 (2011)

    Article  ADS  Google Scholar 

  56. Goldstein, R.V., Makhviladze, T.M., Sarychev, M.E.: Instability of the interface between joint conducting materials under electrical current. Mater. Lett. 6, 98–101 (2016)

    Article  Google Scholar 

  57. Goldstein, R.V., Makhviladze, T.M., Sarychev, M.E.: Electromigration-induced instability of the interface between solid conductors. Phys. Mesomech. 21, 275–282 (2018)

    Article  Google Scholar 

  58. Grekov, M.A.: Singular Plane Problems in Elasticity. St. Petersburg State University, St. Petersburg (2001)

    Google Scholar 

  59. Grekov, M.A., Kostyrko, S.A.: Surface effects in an elastic solid with nanosized surface asperities. Int. J. Solids Struct. 96, 153–161 (2016)

    Article  Google Scholar 

  60. Grekov, M.A., Sergeeva, T.S.: Interaction of edge dislocation array with bimaterial interface incorporating interface elasticity. Int. J. Eng. Sci. 149, 103233 (2020)

    Article  MathSciNet  Google Scholar 

  61. Grekov, M.A., Vakaeva, A.B., Müller, W.H.: Stress field around cylindrical nanopore by various models of surface elasticity. Contin. Mech. Thermodyn. 35(1), 231–243 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  62. Grilhé, J.: Study of roughness formation induced by homogeneous stress at the free surfaces of solids. Acta Metall. Mater. 41, 909–913 (1993)

    Article  Google Scholar 

  63. Grinfeld, M.: Instability of the equilibrium of a nonhydrostatically stressed body and a melt. Fluid Dyn. 22, 169–173 (1987)

    Article  ADS  Google Scholar 

  64. Grinfeld, M.A.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, Sussex (1991)

    Google Scholar 

  65. Grinfeld, M., Grinfeld, P.: Towards thermodynamics of elastic electric conductors. Philos. Mag. A 81, 1341–1354 (2001)

    Article  ADS  CAS  Google Scholar 

  66. Grinfeld, M.A., Hazzledine, P.M.: Rearrangement at coherent interfaces in heterogeneous solids. Philos. Mag. Lett. 74, 17–23 (1996)

    Article  ADS  CAS  Google Scholar 

  67. Gurtin, M.E.: Multiphase thermomechanics with interfacial structure 1. Heat conduction and the capillary balance law. Arch. Ration. Mech. Anal. 104, 195–221 (1988)

    Article  MathSciNet  Google Scholar 

  68. Gurtin, M.E., Jabbour, M.E.: Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Ration. Mech. Anal. 163, 171–208 (2002)

    Article  MathSciNet  Google Scholar 

  69. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  70. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids. Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  71. Gurtin, M.E., Struthers, A.: Multiphase thermomechanics with interfacial structure. Arch. Rational Mech. Anal. 112, 97–160 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  72. Gurtin, M.E., Voorhees, P.W.: The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. A 440, 323–343 (1993)

    ADS  MathSciNet  CAS  Google Scholar 

  73. Gurtin, M.E., Voorhees, P.W.: The thermodynamics of evolving interfaces far from equilibrium. Acta Mater. 44, 235–247 (1996)

    Article  ADS  CAS  Google Scholar 

  74. Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  ADS  CAS  Google Scholar 

  75. Haiss, W.: Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648 (2001)

    Article  ADS  CAS  Google Scholar 

  76. Herring, C.: Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87–93 (1951)

    Article  ADS  CAS  Google Scholar 

  77. Herring, C.: The use of classical macroscopic concepts in surface energy problems. In: Gomer, R., Smith, C.S. (eds.) Structure and Properties of Solid Surfaces, pp. 5–72. University of Chicago Press, Chicago (1953)

    Google Scholar 

  78. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 302–362 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  79. Ibach, H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 195–263 (1997)

    Article  ADS  Google Scholar 

  80. Ibach, H.: Physics of Surfaces and Interfaces. Springer, Berlin (2006)

    Google Scholar 

  81. Javili, A., Ottosen, N.S., Ristinmaa, M., Mosler, J.: Aspects of interface elasticity theory. Math. Mech. Solids 23, 1004–1024 (2018)

    Article  MathSciNet  Google Scholar 

  82. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lowerdimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale: a unifying review. Appl. Mech. Rev. 65, 010802 (2013)

    Article  ADS  Google Scholar 

  83. Jesson, D.E., Pennycook, S.J., Baribeau, J.M.: Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation. Phys. Rev. Lett. 71, 1744–1747 (1993)

    Article  ADS  PubMed  CAS  Google Scholar 

  84. Johnson, W.C., Voorhees, P.W.: Interfacial stress, interfacial energy, and phase equilibria in binary alloys. J. Stat. Phys. 95, 1281–1309 (1999)

    Article  ADS  Google Scholar 

  85. Jonsdottir, F.: Computation of equilibrium surface fluctuations in strained epitaxial-films due to interface misfit dislocation. Model. Simul. Mater. Sci. Eng. 3, 503–520 (1995)

    Article  ADS  Google Scholar 

  86. Junqua, N., Grilhé, J.: Instabilities of planar interfaces between two stressed materials. Philos. Mag. Lett. 69, 61–70 (1994)

    Article  ADS  CAS  Google Scholar 

  87. Junqua, N., Grilhé, J.: Interface instabilities of multilayers and flat precipitates. Philos. Mag. 71, 1125–1134 (1995)

    Article  ADS  CAS  Google Scholar 

  88. Kassner, K., Misbah, C.: Non-linear evolution of a uniaxially stressed solid: a route to fracture? EPL 28, 245–250 (1994)

    Article  ADS  CAS  Google Scholar 

  89. Kassner, K., Misbah, C., Müller, J., Kappey, J., Kohlert, P.: Phase-field approach to crystal growth in the presence of strain. J. Cryst. Growth 225, 289–293 (2001)

    Article  ADS  CAS  Google Scholar 

  90. Kim, J.-H., Vlassak, J.J.: Perturbation analysis of an undulating free surface in a multi-layered structure. Int. J. Solids Struct. 44, 7924–7937 (2007)

    Article  CAS  Google Scholar 

  91. Klinger, L., Levin, L., Srolovitz, D.: Morphological stability of a heterophase interface under electromigration conditions. J. Appl. Phys. 79, 6834–6839 (1996)

    Article  ADS  CAS  Google Scholar 

  92. Köhler, C., Backofen, R., Voigt, A.: Relaxation of curvature-induced elastic stress by the Asaro-Tiller-Grinfeld instability. EPL 111 (2015)

  93. Kostyrko, S.A., Altenbach H., Grekov M.A.: Stress concentration in ultra-thin coating with undulated surface profile. In: Proceedings of the 7th International Conference on Coupled Problems in Science and Engineering, pp. 1183–1192 (2017)

  94. Kostyrko, S.A., Grekov, M.A.: Elastic field at a rugous interface of a bimaterial with surface effects. Eng. Fract. Mech. 216, 106507 (2019)

    Article  Google Scholar 

  95. Kostyrko, S., Grekov, M., Altenbach, H.: Stress concentration analysis of nanosized thin-film coating with rough interface. Contin. Mech. Thermodyn. 31, 1863–1871 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  96. Kostyrko, S., Grekov, M., Altenbach, H.: Coupled effect of curved surface and interface on stress state of wrinkled thin film coating at the nanoscale. ZAMM 101(8), e202000202 (2021)

    Article  MathSciNet  Google Scholar 

  97. Kostyrko, S., Grekov, M., Altenbach, H.: Stress distribution at the wavy surface of a solid incorporating surface stresses and surface tension. In: Altenbach, H., et al. (eds.) Advances in Solid and Fracture Mechanics. Advanced Structured Materials, vol. 180, pp. 151–166. Springer, Berlin (2022)

    Chapter  Google Scholar 

  98. Kostyrko, S., Shuvalov, G.: Surface elasticity effect on diffusional growth of surface defects in strained solids. Contin. Mech. Thermodyn. 31, 1795–1803 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  99. Krishnamurthy, R., Srolovitz, D.J.: Film/substrate interface stability in thin films. J. Appl. Phys. 99, 043504 (2006)

    Article  ADS  Google Scholar 

  100. Kukta, R.V., Freund, L.B.: Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate. J. Mech. Phys. Solids. 45, 1835–1860 (1997)

    Article  ADS  Google Scholar 

  101. Larché, F.C., Cahn, J.C.: The interaction of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)

    Article  Google Scholar 

  102. Leo, P.H., Lowengrub, J.S., Jou, H.J.: A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46, 2113–2130 (1998)

    Article  ADS  CAS  Google Scholar 

  103. Leo, P.H., Sekerka, R.F.: The effect of surface stress on crystal–melt and crystal–crystal equilibrium. Acta Metall. 37(12), 3119–3138 (1989)

    Article  Google Scholar 

  104. Levine, M., Golovin, A.A., Davis, S.H., Voorhees, P.W.: Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate. Phys. Rev. B 75, 205312 (2007)

    Article  ADS  Google Scholar 

  105. Li, A., Liu, F., Lagally, M.G.: Equilibrium shape of two-dimensional islands under stress. Phys. Rev. Lett. 85(9), 1922 (2000)

    Article  ADS  PubMed  CAS  Google Scholar 

  106. Liu, F., Wu, F., Lagally, M.G.: Effect of strain on structure and morphology of ultrathin Ge films on Si(001). Chem. Rev. 97(4), 1045–1062 (1997)

    Article  PubMed  CAS  Google Scholar 

  107. Lu, W., Suo, Z.: Dynamics of nanoscale pattern formation of an epitaxial monolayer. J. Mech. Phys. Solids 49, 1937–1950 (2001)

    Article  ADS  Google Scholar 

  108. Manjón, A.G., Zhang, S., Völker, B., Meischein, M., Ludwig, A., Scheu, C.: Exploring stability of a nanoscale complex solid solution thin film by in situ heating transmission electron microscopy. MRS Bull. 47, 371–378 (2022)

    Article  ADS  Google Scholar 

  109. McBride, A.T., Javili, A., Steinmann, P., Bargmann, S.: Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J. Mech. Phys. Solids 59, 2116–2133 (2011)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  110. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  ADS  CAS  Google Scholar 

  111. Mogilevskaya, S.G., Zemlyanova, A.Y., Kushch, V.I.: Fiber-and particle-reinforced composite materials with the Gurtin–Murdoch and Steigmann–Ogden surface energy endowed interfaces. Appl. Mech. Rev. 73(5), 050801 (2021)

    Article  ADS  Google Scholar 

  112. Mozaffari, K., Yang, S., Sharma, P.: Surface Energy and Nanoscale Mechanics. Springer, Switzerland AG (2018)

    Google Scholar 

  113. Müller, J., Grant, M.: Model of surface instabilities induced by stress. Phys. Rev. Lett. 82, 1736–1739 (1998)

    Article  ADS  Google Scholar 

  114. Müller, P., Saúl, A.: Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004)

    Article  ADS  Google Scholar 

  115. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  ADS  CAS  Google Scholar 

  116. Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963)

    Article  ADS  CAS  Google Scholar 

  117. Murdoch, A.: A thermodynamical theory of elastic material interfaces. Q. J. Mech. Appl. Math 29, 245–275 (1976)

    Article  MathSciNet  Google Scholar 

  118. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Netherlands (1977)

    Book  Google Scholar 

  119. Nazarenko, L., Bargmann, S., Stolarski, H.: Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin–Murdoch model of material surfaces. Contin. Mech. Thermodyn. 29(1), 77–96 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  120. Norris, A.N.: The energy of a growing elastic surface. Int. J. Solids Struct. 35, 5237–5252 (1998)

    Article  MathSciNet  Google Scholar 

  121. Noziéres, P.: Surface melting and crystal shape. J. Phys. 50, 2541–2550 (1989)

    Article  Google Scholar 

  122. Noziéres, P.: Amplitude expansion for the Grinfeld instability due to uniaxial stress at a solid surface. J. Phys. I(3), 681–686 (1993)

    Google Scholar 

  123. Noziéres, P., Wolf, D.E.: Interfacial properties of elastically strained materials. Z. Phys. B Con. Mat. 70, 399–407 (1988)

    Article  ADS  Google Scholar 

  124. Orowan, E.: Surface energy and surface tension in solids and liquids. Proc. R. Soc. A 316, 473–491 (1970)

    ADS  CAS  Google Scholar 

  125. Ozkan, C.S., Nix, W.D., Gao, H.: Strain relaxation and defect formation in heteroepitaxial Si1-xGex films via surface roughening induced by controlled annealing experiments. Appl. Phys. Lett. 70, 2247–2249 (1997)

    Article  ADS  CAS  Google Scholar 

  126. Pang, Y., Huang, R.: Nonlinear effect of stress and wetting on surface evolution of epitaxial thin films. Phys. Rev. B 74, 075413 (2006)

    Article  ADS  Google Scholar 

  127. Panin, A.V., Shugurov, A.R.: Effect of local curvature of internal and external interfaces on mass transfer responsible for thin film degradation. Phys. Mesomech. 16, 348–354 (2013)

    Article  Google Scholar 

  128. Rätz, A., Ribalta, A., Voigt, A.: Surface evolution of elastically stressed films under deposition by a diffuse interface model. J. Comput. Phys. 214, 187–208 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  129. Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. 53, 536–544 (2010)

    Article  Google Scholar 

  130. Savina, T., Voorhees, P.W., Davis, S.H.: The effect of surface stress and wetting layers on morphological instability in epitaxially strained films. J. App. Phys. 96, 3127–3133 (2004)

    Article  ADS  CAS  Google Scholar 

  131. Sekerka, R.F.: Morphological stability. J. Cryst. Growth 3, 71–81 (1968)

    Article  ADS  Google Scholar 

  132. Seol, D.J., Hu, S., Liu, Z., Chen, L., Kim, S.G., Oh, K.H.: Phase-field modeling of stress-induced surface instabilities in heteroepitaxial thin films. J. App. Phys. 98, 044910 (2005)

    Article  ADS  Google Scholar 

  133. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys. Rev. B. 71(9), 094104 (2005)

    Article  ADS  Google Scholar 

  134. Shenoy, V.B., Freund, L.B.: A continuum description of the energetics and evolution of stepped surfaces in strained nanostructures. J. Mech. Phys. Solids 50, 1817–1841 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  135. Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. Ser. A 63, 444–457 (1950)

    Article  ADS  Google Scholar 

  136. Shuvalov, G., Kostyrko, S.: On the role of interfacial elasticity in morphological instability of a heteroepitaxial interface. Contin. Mech. Thermodyn. 33, 2095–2107 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  137. Shuvalov, G.M., Kostyrko, S.A.: Stability analysis of nanoscale surface patterns in ultrathin film coating. Mater. Phys. Mech. 48(2), 232–241 (2022)

    Google Scholar 

  138. Spencer, B.J.: Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski–Krastanow islands. Phys. Rev. B 59, 2011–2017 (1999)

    Article  ADS  CAS  Google Scholar 

  139. Spencer, B.J., Voorhees, P.W., Davis, S.H.: Morphological instability in epitaxially strained dislocation-free solid films. Phys. Rev. Lett. 6726, 3696–3699 (1993)

    Google Scholar 

  140. Spencer, B.J., Meiron, D.I.: Nonlinear evolution of the stress-driven morphological instability in a two-dimensional semi-infinite solid. Acta Metall. Mater. 42, 3629–3641 (1994)

    Article  Google Scholar 

  141. Spencer, B.J., Tersoff, J.: Equilibrium shapes and properties of epitaxially strained islands. Phys. Rev. Lett. 79, 4858–4861 (1997)

    Article  ADS  CAS  Google Scholar 

  142. Srolovitz, D.J.: On the stability of surfaces of stressed solids. Acta Metall. 37, 621–625 (1989)

    Article  Google Scholar 

  143. Stoth, B.: A sharp interface limit of the phase field equations: one-dimensional and axisymmetric. Eur. J. App. Math 7, 603–633 (1996)

    Article  MathSciNet  Google Scholar 

  144. Suo, Z., Lu, W.: Forces that drive nanoscale self-assembly on solid surfaces. J. Nanopart. Res. 2, 333–344 (2000)

    Article  ADS  CAS  Google Scholar 

  145. Suo, Z., Zhang, Z.: Epitaxial films stabilized by long-range forces. Phys. Rev. B 58, 5116–5120 (1998)

    Article  ADS  CAS  Google Scholar 

  146. Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77, 183–197 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  147. Thornton, K.S., Agren, J., Voorhees, P.W.: Modelling the evolution of phase boundaries in solids at the meso- and nano-scales. Acta Mater. 51, 5675–5710 (2003)

    Article  ADS  CAS  Google Scholar 

  148. Torii, R.H., Balibar, S.: Helium crystals under stress: the Grinfeld instability. J. Low Temp. Phys. 89, 391–400 (1992)

    Article  ADS  CAS  Google Scholar 

  149. Vakaeva, A.B., Shuvalov, G.M., Kostyrko, S.A.: Evolution of the cylindrical nanopore morphology under diffusion processes. Mater. Phys. Mech. 47(3), 423–430 (2021)

    Google Scholar 

  150. Vasu, K., Krishna, M.G., Padmanabhan, K.A.: Effects of elastic strain and diffusion-limited aggregation on morphological instabilities in sputtered nitride thin films. J. Mater. Res. 29, 1711–1720 (2014)

    Article  ADS  CAS  Google Scholar 

  151. Villain, P., Beauchamp, P., Badawi, K.F., Goudeau, P., Renault, P.-O.: Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires. Scripta Mater. 50, 1247–1251 (2004)

    Article  CAS  Google Scholar 

  152. Wang, J., Duan, H.L., Huang, Z.P., Karihaloo, B.L.: A scaling law for properties of nano-structured materials. Proc. R. Soc. A 462, 1355–1363 (2006)

    Article  ADS  Google Scholar 

  153. Wang, J., Huang, Z., Duan, H., Yu, S.W., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  CAS  Google Scholar 

  154. Wang, Y.U., Jin, Y.M., Khachaturyan, A.G.: Phase field microelasticity modeling of surface instability of heteroepitaxial thin films. Acta Mater. 52, 81–92 (2004)

    Article  ADS  CAS  Google Scholar 

  155. Wang, W., Suo, Z.: Shape change of a pore in a stressed solid via surface diffusion motivated by surface and elastic energy variation. J. Mech. Phys. Solids. 52, 709–729 (1997)

    Article  ADS  Google Scholar 

  156. Wang, Z., Zhao, Y., Huang, Z.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  CAS  Google Scholar 

  157. Wolf, D.E., Noziéres, P.: Interfacial properties of elastically strained materials. Z. Phys. B Con. Mat. 70, 507–513 (1988)

    Article  ADS  Google Scholar 

  158. Wu, C.H.: The chemical potential for stress-driven surface diffusion. J. Mech. Phys. Solids 44, 2059–2077 (1996)

    Article  ADS  CAS  Google Scholar 

  159. Wu, C.H.: The effect of surface stress on the configurational equilibrium of voids and cracks. J. Mech. Phys. Solids 47, 2469–2492 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  160. Wu, C.H., Hsu, J., Chen, C.: The effect of surface stress on the stability of surfaces of stressed solids. Acta Mater. 46, 3755–3760 (1998)

    CAS  Google Scholar 

  161. Wu, K., Voorhees, P.W.: Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach. Phys. Rev. B 80, 125408 (2009)

    Article  ADS  Google Scholar 

  162. Yakobson, B.I.: Stress-promoted interface diffusion as a precursor of fracture. J. Chem. Phys. 99, 6923–6934 (1993)

    Article  ADS  Google Scholar 

  163. Yang, W.H., Srolovitz, D.J.: Surface morphology evolution in stressed solids: surface diffusion controlled crack initiation. J. Mech. Phys. Solids 42, 1551–1574 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  164. Yao, J.Y., Andersson, T.G., Dunlop, G.L.: Microstructures and critical thicknesses of InxGa1-xAs/GaAs strained-layer structures. Semicond. Sci. Technol. 9, 1086–1095 (1994)

    Article  ADS  CAS  Google Scholar 

  165. Yeon, D., Cha, P., Grant, M.: Phase field model of stress-induced surface instabilities: surface diffusion. Acta Mat. 54, 1623–1630 (2006)

    Article  ADS  CAS  Google Scholar 

  166. Zhang, Y.: Formation of epitaxially strained islands by controlled annealing. Appl. Phys. Lett. 75, 205–207 (1999)

    Article  ADS  CAS  Google Scholar 

  167. Zhang, J., Zhang, K., Yong, J., Yang, Q., He, Y., Zhang, C., Hou, X., Chen, F.: Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics. Colloid Interface Sci. 578, 146–154 (2020)

    Article  ADS  CAS  Google Scholar 

  168. Zhou, L.G., Huang, H.C.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84, 1940–1942 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

G. Shuvalov and S. Kostyrko acknowledge the support of the Russian Science Foundation under grant number 22-11-00087, https://rscf.ru/en/project/22-11-00087/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Shuvalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, G., Kostyrko, S. & Altenbach, H. Interplay of surface and bulk elasticity in morphological stability of ultra-thin film coatings. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01279-3

Keywords

Navigation