Skip to main content
Log in

Synthesis and Chemical Transformations of 1-Aryladamantanes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

1-Aryladamantanes were synthesized, and their transformations in fuming nitric acid were studied. The nitroxylation of the saturated framework are accompanied by the nitration of the aromatic moiety and form 3-(dinitroaryl)adamantan-1-yl nitrates. A number of new polyfunctional compounds were synthesized by the reactions of substituted 3-(dinitroaryl)adamantan-1-yl nitrates with nucleophiles in concentrated sulfuric acid. Due to their polyfunctionality, the compounds obtained can be used as starting substrates in the synthesis of substances with a wide range of biological activity and materials with a complex of valuable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Schwertfeger, H., Fokin, A.A., and Schreiner, R.R., Angew. Chem. Int. Ed., 2008, vol. 47, p. 1022. https://doi.org/10.1002/anie.200701684

    Article  CAS  Google Scholar 

  2. Wanka, L., Iqbal, K., Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stockdale, T.P. and Williams, C.M., Chem. Soc. Rev., 2015, vol. 44, p. 7737. https://doi.org/10.1039/c4cs00477a

    Article  CAS  PubMed  Google Scholar 

  4. Spilovska, K., Zemek, F., Korabecny, J., Nepovimova, E., Soukup, O., Windisch, M., and Kuca, K., Curr. Med. Chem., 2016, vol. 23, p. 3245. https://doi.org/10.2174/0929867323666160525114026

    Article  CAS  PubMed  Google Scholar 

  5. Lamoureux, G. and Artavia, G., Curr. Med. Chem., 2010, vol. 17, p. 2967. https://doi.org/10.2174/092986710792065027

    Article  CAS  PubMed  Google Scholar 

  6. Dembitsky, V.M., Gloriozova, T.A., and Poroikov, V.V., Biochem. Biophys. Res. Commun., 2020, vol. 529, p. 1225. https://doi.org/10.1016/j.bbrc.2020.06.123

    Article  CAS  PubMed  Google Scholar 

  7. Shiryaev, V.A. and Klimochkin, Y.N., Chem. Heterocycl. Compd., 2020, vol. 56, p. 626 https://doi.org/10.1007/s10593-020-02712-6

    Article  CAS  Google Scholar 

  8. Klimochkin, Y.N., Shiryaev, V.A., and Leonova, M.V., Russ. Chem. Bull., 2015, vol. 64, p. 1473. https://doi.org/10.1007/s11172-015-1035-y

    Article  CAS  Google Scholar 

  9. Shiryaev, V.A., Skomorohov, M.Yu., Leonova, M.V., Bormotov, N.I., Serova, O.A., Shishkina, L.N., Agafonov, A.P., Maksyutov, R.A., and Klimochkin, Y.N., Eur. J. Med. Chem., 2021, vol. 221, p. 113485. https://doi.org/10.1016/j.ejmech.2021.113485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiryaev, V.A., Radchenko, E.V., Palyulin, V.A., Zefirov, N.S., Bormotov, N.I., Serova, O.A., Shishkina, L.N., Baimuratov, M.R., Bormasheva, K.M., Gruzd, Y.A., Ivleva, E.A., Leonova, M.V., Lukashenko, A.V., Osipov, D.V., Osyanin, V.A., Reznikov, A.N., Shadrikova, V.A., Sibiryakova, A.E., Tkachenko, I.M., and Klimochkin, Y.N., Eur. J. Med. Chem., 2018, vol. 158, p. 214. https://doi.org/10.1016/j.ejmech.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  11. Shokova, É.A. and Kovalev, V.V., Pharm. Chem. J., 2016, vol. 50, p. 63. https://doi.org/10.1007/s11094-016-1400-7

    Article  CAS  Google Scholar 

  12. Štimac, A., Šekutor, M., Mlinarić-Majerski, K., Frkanec, L., and Frkanec, R., Molecules, 2017, vol. 22, p. 297/1. https://doi.org/10.3390/molecules22020297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klapötke, T.M., Krumm, B., and Widera, A., ChemPlusChem, 2018, vol. 83, p. 61. https://doi.org/10.1002/cplu.201700542

    Article  CAS  PubMed  Google Scholar 

  14. Harrison, K.W., Rosenkoetter, K.E., and Harvey, B.G., Energy Fuels, 2018, vol. 32, p. 7786. https://doi.org/10.1021/acs.energyfuels.8b00792

    Article  CAS  Google Scholar 

  15. Xie, J., Zhang, X., Xie, J., Xu, J., Pan, L., and Zou, J.-J., Fuel, 2019, vol. 239, p. 652. https://doi.org/10.1016/j.fuel.2018.11.064

    Article  CAS  Google Scholar 

  16. Agnew-Francis, K.A. and Williams, C.M., Adv. Synth. Catal., 2016, vol. 358, p. 675. https://doi.org/10.1002/adsc.201500949

    Article  CAS  Google Scholar 

  17. Parmar, B., Patel, P., Murali, V., Rachuri, Y., Kureshy, R.I., Khan, N.H., and Suresh, E., Inorg. Chem. Front., 2018, vol. 5, p. 2630. https://doi.org/10.1039/C8QI00744F

    Article  CAS  Google Scholar 

  18. Zheng, Y.-Z., Zheng, Z., Tong, M.-L., and Chen, X.-M., Polyhedron, 2013, vol. 52, p. 1159. https://doi.org/10.1016/j.poly.2012.06.051

    Article  CAS  Google Scholar 

  19. Nasrallah, H. and Hierso, J.-C., Chem. Mater., 2019, vol. 31, p. 619. https://doi.org/10.1021/acs.chemmater.8b04508

    Article  CAS  Google Scholar 

  20. Ryan, L.S., Nakatsuka, A., and Lippert, A.R., Results Chem., 2021, vol. 3, p. 100106. https://doi.org/10.1016/j.rechem.2021.100106

    Article  CAS  Google Scholar 

  21. Kagalwala, H.N., Reeves, R.T., and Lippert, A.R., Curr. Opin. Chem. Biol., 2022, vol. 68, p. 102134. https://doi.org/10.1016/j.cbpa.2022.102134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vacher, M., Galván, I.F., Ding, B.-W., Schramm, S., Berraud-Pache, R., Naumov, P., Ferré, N., Liu, Y.-J., Navizet, I., Roca-Sanjuán, D., Baader, W.J., and Lindh, R., Chem. Rev., 2018, vol. 118, p. 6927. https://doi.org/10.1021/acs.chemrev.7b00649

    Article  CAS  PubMed  Google Scholar 

  23. Gu, Y., Zhou, X., Li, Y., Wu, K., Wang, F., Huang, M., Guo, F., Wang, Y., Gong, S., Ma, D., and Yang, C., Org. Electron., 2015, vol. 25, p. 193. https://doi.org/10.1016/j.orgel.2015.06.036

    Article  CAS  Google Scholar 

  24. Zhu, D.Y., Guo, J.W., Xian, J.X., and Fu, S.Q., RSC Adv., 2017, vol. 7, p. 39270. https://doi.org/10.1039/c7ra06504c

    Article  CAS  ADS  Google Scholar 

  25. Wu, H., Xu, H., Tao, F., Su, X., Yu, W.W., Li, T., and Cui, Y., New J. Chem., 2018, vol. 42, p. 12802. https://doi.org/10.1039/c8nj01881b

    Article  CAS  Google Scholar 

  26. Guan, H.-M., Hu, Y.-X., Xiao, G.-Y., He, W.-Z., Chi, H.-J., Lv, Y.-L., Li, X., Zhang, D.-Y., and Hu, Z.-Z., Dyes Pigm., 2020, vol. 177, p. 108273. https://doi.org/10.1016/j.dyepig.2020.108273

    Article  CAS  Google Scholar 

  27. Zulfiqar, S., Mantione, D., Tall, O.E., Sarwar, M.I., Ruiperez, F., Rothenbergere, A., and Mecerreyesbf, D., J. Mater. Chem., 2016, vol. 4, p. 8190. https://doi.org/10.1039/c6ta01457g

    Article  CAS  Google Scholar 

  28. Agnew-Francis, K.A. and Williams, C.M., Adv. Synth. Catal., 2016, vol. 358, p. 675.

    Article  CAS  Google Scholar 

  29. Watson, B.L., Rolston, N., Bush, K.A., Taleghani, L., and Dauskardt, R.H., J. Mater. Chem., 2017, vol. 5, p. 19267. https://doi.org/10.1039/c7ta05004f

    Article  CAS  Google Scholar 

  30. Cincinelli, R., Musso, L., Guglielmi, M.B., La Porta, I., Fucci, A., D’Andrea, E.L., Cardile, F., Colelli, F., Signorino, G., Darwiche, N., Gervasoni, S., Vistoli, G., Pisano, C., and Dallavalle, S., Bioorg. Chem., 2020, vol. 104, p. 104253. https://doi.org/10.1016/j.bioorg.2020.104253

    Article  CAS  PubMed  Google Scholar 

  31. Dallavalle, S., Musso, L., Cincinelli, R., Darwiche, N., Gervasoni, S., Vistoli, G., Guglielmi, M.B., La Porta, I., Pizzulo, M., Modica, E., Prosperi, F., Signorino, G., Colelli, F., Cardile, F., Fucci, A., D’Andrea, E.L., Riccio, A., and Pisano, C., Eur. J. Med. Chem., 2022, vol. 228, p. 113971. https://doi.org/10.1016/j.ejmech.2021.113971

    Article  CAS  PubMed  Google Scholar 

  32. Ao, M., Hu, X., Qian, Y., Li, B., Zhang, J., Cao, Y., Zhang, Y., Guo, K., Qiu, Y., Jiang, F., Wu, Z., and Fang, M., Bioorg. Chem., 2021, vol. 113, p. 104961. https://doi.org/10.1016/j.bioorg.2021.104961

    Article  CAS  PubMed  Google Scholar 

  33. García-Rodríguez, J., Pérez-Rodríguez, S., Ortiz, M.A., Pereira, R., de Lera, A.R., and Piedrafita, F.J., Bioorg. Med. Chem., 2014, vol. 22, p. 1285. https://doi.org/10.1016/j.bmc.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ao, M., Zhang, J., Qian, Y., Li, B., Wang, X., Chen, J., Zhang, Y., Cao, Y., Qiu, Y., Xu, Y., Wu, Z., and Fang, M., Bioorg. Chem., 2022, vol. 120, p. 105645. https://doi.org/10.1016/j.bioorg.2022.105645

    Article  CAS  PubMed  Google Scholar 

  35. Plewe, M.B., Sokolova, N.V., Gantla, V.R., Brown, E.R., Naik, S., Fetsko, A., Lorimer, D.D., Dranow, D.M., Smutney, H., Bullen, J., Sidhu, R., Master, A., Wang, J., Kallel, E.A., Zhang, L., Kalveram, B., Freiberg, A.N., Henkel, G., and McCormack, K., ACS Med. Chem. Lett., 2020, vol. 11, p. 1160. https://doi.org/10.1021/acsmedchemlett.0c00025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, K., Goo, J.-I., Jung, H.Y., Kim, M., Boovanahalli, S.K., Park, H.R., Kim, M.-O., Kim, D.-H., Lee, H.S., and Choi, Y., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 7456. https://doi.org/10.1016/j.bmcl.2012.10.046

    Article  CAS  PubMed  Google Scholar 

  37. Bernard, B.A., Skin Pharmacol. Physiol., 1993, vol. 6, p. 61. https://doi.org/10.1159/000211165

    Article  Google Scholar 

  38. Moiseev, I.K. and Doroshenko, R.I., Zh. Org. Khim., 1982, vol. 18, p. 1233.

    CAS  Google Scholar 

  39. Zhu, M., Feng, G., Lv, D., Qin, N., and Li, C., Magn. Reson. Chem., 2021, vol. 59, p. 804. https://doi.org/10.1002/mrc.5138

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Q., Babu, K.R., Huang, Z., Song, J., and Bi, X., Synthesis, 2018, vol. 50, p. 2891. https://doi.org/10.1055/s-0037-1610038

    Article  CAS  Google Scholar 

  41. Klimochkin, Yu.N. and Moiseev, I.K., J. Org. Chem., 1991, vol. 27, p. 1577.

    Google Scholar 

  42. Klimochkin, Yu.N., Ivleva, E.A., and Shiryaev, V.A., Russ. J. Org. Chem., 2021, vol. 57, p. 355. https://doi.org/10.1134/S1070428021030052

    Article  CAS  Google Scholar 

  43. Moiseev, I.K., Bagrii, E.I., Klimochkin, Yu.N., Dolgopolova, T.N., Zemtsova, M.N., and Trakhtenberg, P.L., Bull. Acad. Sci. USSR Div. Chem. Sci., 1985, vol. 9, p. 1980. https://doi.org/10.1007/BF00953950

    Article  Google Scholar 

  44. Moiseev, I.K. and Doroshenko, R.I., Zh. Org. Khim., 1983, vol. 19, p. 1117.

    CAS  Google Scholar 

  45. Moiseev, I.K., Stulin, N.V., Yudashkin, A.V., and Klimochkin, Yu.N., J. Gen. Chem. USSR, 1985, vol. 55, p. 1472.

    Google Scholar 

  46. Moiseev, I.K., Bagrii, E.I., Klimochkin, Yu.N., Dolgopolova, T.N., Zemtsova, M.N., and Trakhtenberg, P.L., Bull. Acad. Sci. USSR Div. Chem. Sci., 1985, vol. 9, p. 1983.

    Article  Google Scholar 

  47. Klimochkin, Yu.N., Moiseev, I.K., Leonova, M.V., Nikolaeva, S.N., and Boreko, E.I., Pharm. Chem. J., 2017, vol. 51, p. 13. https://doi.org/10.1007/s11094-017-1548-9

    Article  CAS  Google Scholar 

  48. Yurchenko, R.I., Peresypkina, L.P., Miroshnichenko, V.V., and Yurchenko, A.G., Zh. Org. Khim., 1993, vol. 63, p. 1534.

    Google Scholar 

  49. No, B.I., Butov, G.M., and Ledenev, S.M., Zh. Org. Khim., 1994, vol. 30, p. 315.

    CAS  Google Scholar 

  50. Klimochkin, Yu.N. and Moiseev, I.K., Zh. Org. Khim., 1991, vol. 28, p. 207.

    Google Scholar 

  51. Ivleva, E.A., Pogulyaiko, A.V., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2018, vol. 54, p. 1294. https://doi.org/10.1134/S107042801809004X

    Article  CAS  Google Scholar 

  52. Ivleva, E.A., Khamzina, M.R., Zaborskaya, M.S., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2022, vol. 58, p. 982. https://doi.org/10.1134/S1070428022070065

    Article  CAS  Google Scholar 

  53. Klimochkin, Yu.N., Leonova, M.V., Ivleva, E.A., Kazakova, A.I., and Zaborskaya, M.S., Russ. J. Org. Chem., 2021, vol. 57, p. 1. https://doi.org/10.1134/S1070428021010012

    Article  CAS  Google Scholar 

  54. Leonova, M.V., Skomorokhov, M.Yu., Moiseev, I.K., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2015, vol. 51, p. 1703. https://doi.org/10.1134/S1070428015120064

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the scientific equipment of the “Study of the Physical and Chemical Properties of Substances and Materials” Center for Collective Use, Samara State Technical University.

Funding

The research was financially supported by the Russian Science Foundation (project no. 21-73-20103) (the 13C NMR spectra were recorded using the equipment of the “New Materials and Resource-Saving Technologies” Center for Collective Use, Lobachevskii Nizhny Novgorod State University). The other spectral data were obtained with the support of the Ministry of Science and Higher Education of the Russian Federation (subject no. FSSE-2023-0003) in the framework of the state assignment for the Samara State Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivleva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 11, pp. 1465–1481 https://doi.org/10.31857/S0514749223110083.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivleva, E.A., Orlinskii, N.S., Zaborskaya, M.S. et al. Synthesis and Chemical Transformations of 1-Aryladamantanes. Russ J Org Chem 59, 1901–1915 (2023). https://doi.org/10.1134/S1070428023110088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023110088

Keywords:

Navigation