Skip to main content
Log in

Diabetic Cardiomyopathy and Cell Death: Focus on Metal-Mediated Cell Death

  • Review
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiac myocyte death is an essential initiator of the pathogenesis and progression of various etiological cardiomyopathies, including diabetic cardiomyopathy (DCM), a disease that has been reported since 1972. Cardiac cell death has been detected in the hearts of patients with diabetes and in animal models, and the role of cell death in the pathogenesis of DCM has been extensively investigated. The first review by the authors, specifically focusing on “Cell death and diabetic cardiomyopathy,” was published in the journal, Cardiovascular Toxicology in 2003. Over the past two decades, studies investigating the role of cardiac cell death in the pathogenesis of DCM have gained significant attention, resulting in the discovery of several new kinds of cell death involving different mechanisms, including apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. After the 20th anniversary of the review published in 2003, we now provide an update with a focus on the potential role of metal-mediated cell death, ferroptosis, and cuproptosis in the development of DCM in compliance with this special issue. The intent of our review is to further stimulate work in the field to advance the body of knowledge and continue to drive efforts to develop more advanced therapeutic approaches to prevent cell death, particularly metal-dependent cell death, and, ultimately, to reduce or prevent the development of DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data availability is not applicable to this review since this review was created only based on published literature without no new data.

References

  1. Tsao, C. W., et al. (2022). Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation, 145(8), e153–e639.

    Article  PubMed  Google Scholar 

  2. Althoff, T., et al. (2022). Large-scale diet tracking data reveal disparate associations between food environment and diet. Nature Communications, 13(1), 267.

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  3. El-Kersh, K., et al. (2023). Metallomics in pulmonary arterial hypertension patients. Pulm Circ, 13(1), e12202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, J., et al. (2022). Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicology and Applied Pharmacology, 454, 116247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, Z., et al. (2023). Associations between plasma essential metals levels and the risks of all-cause mortality and cardiovascular disease mortality among individuals with type 2 diabetes. Nutrients, 15(5), 1198.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rubler, S., et al. (1972). New type of cardiomyopathy associated with diabetic glomerulosclerosis. American Journal of Cardiology, 30(6), 595–602.

    Article  CAS  PubMed  Google Scholar 

  7. Tan, Y., et al. (2020). Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nature Reviews Cardiology, 17(9), 585–607.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cai, L., et al. (2002). Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes, 51(6), 1938–1948.

    Article  CAS  PubMed  Google Scholar 

  9. Monkemann, H., et al. (2002). Early molecular events in the development of the diabetic cardiomyopathy. Amino Acids, 23(1–3), 331–336.

    CAS  PubMed  Google Scholar 

  10. Cai, L., & Kang, Y. J. (2003). Cell death and diabetic cardiomyopathy. Cardiovascular Toxicology, 3(3), 219–228.

    Article  CAS  PubMed  Google Scholar 

  11. Wei, J., et al. (2022). Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B, 12(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  12. Ke, D., et al. (2023). Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med, 10, 1135723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sheng, S. Y., et al. (2023). Regulated cell death pathways in cardiomyopathy. Acta Pharmacologica Sinica, 44(8), 1521–1535.

    Article  CAS  PubMed  Google Scholar 

  14. Christgen, S., Tweedell, R. E., & Kanneganti, T. D. (2022). Programming inflammatory cell death for therapy. Pharmacology & Therapeutics, 232, 108010.

    Article  CAS  Google Scholar 

  15. Tummers, B., & Green, D. R. (2022). The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiological Reviews, 102(1), 411–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai, L., et al. (2006). Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. Journal of the American College of Cardiology, 48(8), 1688–1697.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y., et al. (2020). Distinct types of cell death and the implication in diabetic cardiomyopathy. Frontiers in Pharmacology, 11, 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, X., et al. (2023). Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death & Disease, 14(2), 105.

    Article  Google Scholar 

  19. Cai, L., & Kang, Y. J. (2001). Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovascular Toxicology, 1(3), 181–193.

    Article  CAS  PubMed  Google Scholar 

  20. Jubaidi, F. F., et al. (2021). The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. International Journal of Molecular Sciences, 22(10), 5094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y., et al. (2021). RIPK3-mediated necroptosis in diabetic cardiomyopathy requires CaMKII activation. Oxidative Medicine and Cellular Longevity, 2021, 6617816.

    PubMed  PubMed Central  Google Scholar 

  22. Lu, Y., et al. (2021). Pyroptosis and its regulation in diabetic cardiomyopathy. Frontiers in Physiology, 12, 791848.

    Article  PubMed  Google Scholar 

  23. Jia, Y., et al. (2022). Potential diabetic cardiomyopathy therapies targeting pyroptosis: A mini review. Frontiers in Cardiovascular Medicine, 9, 985020.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roemhild, K., et al. (2021). Iron metabolism: Pathophysiology and pharmacology. Trends in Pharmacological Sciences, 42(8), 640–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogt, A. S., et al. (2021). On iron metabolism and its regulation. International Journal of Molecular Sciences, 22(9), 4591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Q., et al. (2009). Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Current Medicinal Chemistry, 16(1), 113–129.

    Article  CAS  PubMed  Google Scholar 

  27. Dixon, S. J., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang, X., et al. (2023). The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nature Reviews Cardiology, 20(1), 7–23.

    Article  PubMed  Google Scholar 

  29. Chen, X., et al. (2020). Iron metabolism in ferroptosis. Front Cell Dev Biol, 8, 590226.

    Article  PubMed  ADS  PubMed Central  Google Scholar 

  30. Yao, W., et al. (2022). Inhibition of the NADPH oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice. Oxidative Medicine and Cellular Longevity, 2022, 1193734.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gao, M., et al. (2019). Role of mitochondria in ferroptosis. Molecular Cell, 73(2), 354-363.e3.

    Article  CAS  PubMed  Google Scholar 

  32. Sha, W., et al. (2021). Mechanism of ferroptosis and its role in type 2 diabetes mellitus. Journal of Diabetes Research, 2021, 9999612.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dai, E., et al. (2020). AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochemical and Biophysical Research Communications, 523(4), 966–971.

    Article  CAS  PubMed  Google Scholar 

  34. Stockwell, B. R. (2022). Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 185(14), 2401–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, X., et al. (2022). Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharmaceutica Sinica B, 12(2), 708–722.

    Article  PubMed  Google Scholar 

  36. Wei, Z., et al. (2022). Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovascular Therapeutics, 2022, 3159717.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wu, S., et al. (2022). 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxidative Medicine and Cellular Longevity, 2022, 3027514.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, C., et al. (2023). Angiotensin II-induced vascular endothelial cells ferroptosis via P53-ALOX12 signal axis. Clinical and Experimental Hypertension, 45(1), 2180019.

    Article  PubMed  Google Scholar 

  39. Zheng, Y., et al. (2008). The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators. Hemoglobin, 32(1–2), 135–145.

    Article  CAS  PubMed  Google Scholar 

  40. Li, W., et al. (2020). Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA and Cell Biology, 39(2), 210–225.

    Article  CAS  PubMed  Google Scholar 

  41. Zang, H., et al. (2020). Autophagy inhibition enables Nrf2 to exaggerate the progression of diabetic cardiomyopathy in mice. Diabetes, 69(12), 2720–2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ni, T., et al. (2021). Inhibition of the long non-coding RNA ZFAS1 attenuates ferroptosis by sponging miR-150-5p and activates CCND2 against diabetic cardiomyopathy. Journal of Cellular and Molecular Medicine, 25(21), 9995–10007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Du, S., et al. (2022). Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front Endocrinol (Lausanne), 13, 1011669.

    Article  PubMed  Google Scholar 

  44. Sun, J., et al. (2023). Exogenous spermidine alleviates diabetic cardiomyopathy via suppressing ROS, ERS and pannexin-1-mediated ferroptosis. Biomolecules and Biomedicine. https://doi.org/10.17305/bb.2022.8846

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, X., et al. (2023). Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytotherapy Research, 37(7), 3042–3056.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, Y., et al. (2023). Ferroptosis: Roles and molecular mechanisms in diabetic cardiomyopathy. Front Endocrinol (Lausanne), 14, 1140644.

    Article  PubMed  Google Scholar 

  47. Chen, J., et al. (2020). The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Archiv. European Journal of Physiology, 472(10), 1415–1429.

    Article  CAS  PubMed  Google Scholar 

  48. Chojnacka, M., et al. (2015). Cox17 protein is an auxiliary factor involved in the control of the mitochondrial contact site and cristae organizing system. Journal of Biological Chemistry, 290(24), 15304–15312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Faa, G., & Crispino, G. (2000). Molecular interactions in copper metabolism. Advances in clinical pathology, 4(4), 195–201.

    CAS  PubMed  Google Scholar 

  50. Wang, D., et al. (2023). The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomedicine & Pharmacotherapy, 163, 114830.

    Article  CAS  Google Scholar 

  51. Tsvetkov, P., et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 375(6586), 1254–1261.

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  52. Chen, L., Min, J., & Wang, F. (2022). Copper homeostasis and cuproptosis in health and disease. Signal Transduction and Targeted Therapy, 7(1), 378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huo, S., et al. (2023). ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. International Journal of Molecular Sciences, 24(2), 1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yuan, H. J., Xue, Y. T., & Liu, Y. (2022). Cuproptosis, the novel therapeutic mechanism for heart failure: A narrative review. Cardiovascular Diagnosis and Therapy, 12(5), 681–692.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bian, R., et al. (2023). Identification of cuproptosis-related biomarkers in dilated cardiomyopathy and potential therapeutic prediction of herbal medicines. Frontiers in Molecular Biosciences, 10, 1154920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kazi, T. G., et al. (2008). Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biological Trace Element Research, 122(1), 1–18.

    Article  CAS  PubMed  Google Scholar 

  57. Krol, E., et al. (2019). The relationship between dietary, serum and hair levels of minerals (Fe, Zn, Cu) and glucose metabolism indices in obese type 2 diabetic patients. Biological Trace Element Research, 189(1), 34–44.

    Article  CAS  PubMed  Google Scholar 

  58. Li, X., et al. (2023). Association of serum copper (Cu) with cardiovascular mortality and all-cause mortality in a general population: A prospective cohort study. BMC Public Health, 23(1), 2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cooper, G. J., et al. (2004). Regeneration of the heart in diabetes by selective copper chelation. Diabetes, 53(9), 2501–2508.

    Article  CAS  PubMed  Google Scholar 

  60. Gong, D., et al. (2006). Molecular changes evoked by triethylenetetramine treatment in the extracellular matrix of the heart and aorta in diabetic rats. Molecular Pharmacology, 70(6), 2045–2051.

    Article  CAS  PubMed  Google Scholar 

  61. Lu, J., et al. (2013). Treatment with a copper-selective chelator causes substantive improvement in cardiac function of diabetic rats with left-ventricular impairment. Cardiovascular Diabetology, 12, 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheung, C. C., et al. (2015). Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease. Biochemical Pharmacology, 97(1), 62–76.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, L., et al. (2013). Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovascular Diabetology, 12, 123.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang, S., et al. (2014). Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovascular Diabetology, 13, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, S., et al. (2020). Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics, 12(2), 259–272.

    Article  CAS  PubMed  Google Scholar 

  66. Baynes, J. W., & Murray, D. B. (2009). The metal chelators, trientine and citrate, inhibit the development of cardiac pathology in the Zucker diabetic rat. Experimental Diabetes Research, 2009, 696378.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zou, C., et al. (2017). Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochemical and Biophysical Research Communications, 486(4), 930–936.

    Article  CAS  PubMed  Google Scholar 

  68. Brunvand, L., et al. (2016). Early reduced myocardial diastolic function in children and adolescents with type 1 diabetes mellitus a population-based study. BMC Cardiovascular Disorders, 16, 103.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Huang, S., et al. (2023). Cuproptosis-related gene DLAT serves as a prognostic biomarker for immunotherapy in clear cell renal cell carcinoma: Multi-database and experimental verification. Aging (Albany NY), 15(21), 12314–12329.

    Article  PubMed  Google Scholar 

  70. Schulz, V., et al. (2023). Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nature Chemical Biology, 19(2), 206–217.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The works of the authors are supported in part by grants from the National Institute of Environmental Health Sciences (P30ES030283 to LC, KW) and the National Heart, Lung, and Blood Institute (R01HL125877, R01HL160927 to YT, LC).

Funding

National Institute of Environmental Health Sciences, P30ES030283, National Heart, Lung, and Blood Institute, R01HL125877, R01HL160927.

Author information

Authors and Affiliations

Authors

Contributions

LC, YT, BH, and KW: wrote the manuscript text and LC and YT: prepared Figs. 13. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Lu Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Katherine James.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Tan, Y., Holland, B. et al. Diabetic Cardiomyopathy and Cell Death: Focus on Metal-Mediated Cell Death. Cardiovasc Toxicol 24, 71–84 (2024). https://doi.org/10.1007/s12012-024-09836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-024-09836-7

Keywords

Navigation