Skip to main content
Log in

Luftverschmutzung, Lärm und Hypertonie

Komplizen im Verbrechen

Air pollution, noise and hypertension

Partners in crime

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Luftverschmutzung und Verkehrslärm sind wichtige Umweltrisikofaktoren, die die Gesundheit in städtischen Gesellschaften gefährden und oft gemeinsam als „Komplizen“ auftreten. Obwohl Luftverschmutzung und Lärm in städtischen Umgebungen häufig gleichzeitig auftreten, wurden sie in der Regel getrennt untersucht, wobei zahlreiche Studien konsistente Auswirkungen individueller Expositionen auf den Blutdruck dokumentieren. Im folgenden Übersichtsartikel beleuchten wir die Epidemiologie von Luftverschmutzung und Lärm mit Hinblick auf den Herz-Kreislauf-Risikofaktor arterielle Hypertonie sowie die zugrunde liegende Pathophysiologie. Beide Umweltbelastungen führen nachweislich zu einer endothelialen Dysfunktion, oxidativem Stress, einer ausgeprägten Gefäßentzündung, zur Störung des zirkadianen Rhythmus und zur Aktivierung des autonomen Nervensystems, die insgesamt die Entwicklung von Bluthochdruck und Herz-Kreislauf-Erkrankungen begünstigen. Aus gesellschaftlicher und politischer Sicht besteht dringender Bedarf, auf das Gefahrenpotenzial von Luftverschmutzung und Verkehrslärm in den Präventionsrichtlinien der American Heart Association (AHA)/des American College of Cardiology (ACC) und in den ESC(European Society of Cardiology)-Richtlinien zur Prävention hinzuweisen. Daher ist es ein wichtiges Ziel für die Zukunft, das Bewusstsein für Umweltrisikofaktoren als bedeutende und insbesondere vermeidbare Risikofaktoren für Herz-Kreislauf-Erkrankungen zu schärfen.

Abstract

Air pollution and traffic noise are two important environmental risk factors that endanger health in urban societies and often act together as “partners in crime”. Although air pollution and noise often co-occur in urban environments, they have typically been studied separately, with numerous studies documenting consistent effects of individual exposure on blood pressure. In the following review article, we examine the epidemiology of air pollution and noise, especially regarding the cardiovascular risk factor arterial hypertension and the underlying pathophysiology. Both environmental stressors have been shown to lead to endothelial dysfunction, oxidative stress, pronounced vascular inflammation, disruption of circadian rhythms and activation of the autonomic nervous system, all of which promote the development of hypertension and cardiovascular diseases. From a societal and political perspective, there is an urgent need to point out the potential dangers of air pollution and traffic noise in the American Heart Association (AHA)/American College of Cardiology (ACC) prevention guidelines and the European Society of Cardiology (ESC) guidelines on prevention. Therefore, an essential goal for the future is to raise awareness of environmental risk factors as important and, in particular, preventable risk factors for cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Al-Kindi S, Brook RD, Biswal S, Rajagopalan S (2020) Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol 17:656–672

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Kindi SG, Brook RD et al (2021) The benefits of intensive versus standard blood pressure treatment according to fine particulate matter air pollution exposure: a post hoc analysis of SPRINT. Hypertension: 813–822

  3. Anonymous European Environment Agency Environmental noise in Europe—2020. https://www.eea.europa.eu/publications/environmental-noise-in-europe. Zugegriffen: 28. Dez. 2020

  4. Anonymous Science for environment policy: In depth report 13. The link between noise and air pollution and the socioeconomic status. https://ec.europa.eu/environment/integration/research/newsalert/pdf/air_noise_pollution_socioeconomic_status_links_IR13_en.pdf

  5. Anonymous Weltgesundheitsorganisation (2018) Leitlinien für Umgebungslärm für die Europäische Region. https://www.euro.who.int/__data/assets/pdf_file/0011/383924/noise-guidelines-exec-sum-ger.pdf;. Zugegriffen: 24. Mai 2021

  6. Arku RE, Brauer M, Ahmed SH et al (2020) Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study. Environ Pollut 262:114197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Badihian N, Riahi R, Qorbani M et al (2020) The associations between noise annoyance and psychological distress with blood pressure in children and adolescents: the CASPIAN‑V Study. J Clin Hypertens 22:1434–1441

    Article  Google Scholar 

  8. Jimenez BMT, Frenis K et al (2021) Noise-induced vascular dysfunction, oxidative Stress, and inflammation are improved by pharmacological modulation of the NRF2/HO‑1 axis. Antioxidants 10:

  9. Bonzini M, Tripodi A, Artoni A et al (2010) Effects of inhalable particulate matter on blood coagulation. J Thromb Haemost 8:662–668

    Article  CAS  PubMed  Google Scholar 

  10. Cai Y, Hodgson S, Blangiardo M et al (2018) Road traffic noise, air pollution and incident cardiovascular disease: a joint analysis of the HUNT, EPIC-Oxford and UK biobank cohorts. Environ Int 114:191–201

    Article  CAS  PubMed  Google Scholar 

  11. Cappuccio FP, Cooper D, D’elia L et al (2011) Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J 32:1484–1492

    Article  PubMed  Google Scholar 

  12. Cheng Y, Ma N, Witt C et al (2021) Face masks effectively limit the probability of SARS-CoV‑2 transmission. Science 372:1439–1443

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Du X, Zeng X, Zhang J et al (2020) Ambient fine particulate matter induced the elevation of blood pressure through ACE2/Ang(1–7) pathway: the evidence from urine metabolites. Ecotoxicol Environ Saf 203:111044

    Article  CAS  PubMed  Google Scholar 

  14. Dzhambov AM, Dimitrova DD (2017) Children’s blood pressure and its association with road traffic noise exposure—a systematic review with meta-analysis. Environ Res 152:244–255

    Article  CAS  PubMed  Google Scholar 

  15. Dzhambov AM, Dimitrova DD (2018) Residential road traffic noise as a risk factor for hypertension in adults: systematic review and meta-analysis of analytic studies published in the period 2011–2017. Environ Pollut 240:306–318

    Article  CAS  PubMed  Google Scholar 

  16. Foraster M, Eze IC, Schaffner E et al (2017) Exposure to road, railway, and aircraft noise and arterial stiffness in the SAPALDIA study: annual average noise levels and temporal noise characteristics. Environ Health Perspect 125:97004

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fuks KB, Weinmayr G, Basagana X et al (2017) Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). Eur Heart J 38:983–990

    CAS  PubMed  Google Scholar 

  18. Hahad O, Rajagopalan S, Lelieveld J et al (2023) Noise and air pollution as risk factors for hypertension: part I—epidemiology. Hypertension 80:1375–1383

    Article  CAS  PubMed  Google Scholar 

  19. Hahad O, Rajagopalan S, Lelieveld J et al (2023) Noise and air pollution as risk factors for hypertension: part II-pathophysiologic insight. Hypertension 80:1384–1392

    Article  CAS  PubMed  Google Scholar 

  20. Harbo Poulsen A, Sorensen M, Hvidtfeldt UA et al (2023) Concomitant exposure to air pollution, green space and noise, and risk of myocardial infarction. A cohort study from Denmark. Eur J Prev Cardiol

  21. Herzog J, Schmidt FP, Hahad O et al (2019) Acute exposure to nocturnal train noise induces endothelial dysfunction and pro-thromboinflammatory changes of the plasma proteome in healthy subjects. Basic Res Cardiol 114:46

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hu J, Xue X, Xiao M et al (2021) The acute effects of particulate matter air pollution on ambulatory blood pressure: a multicenter analysis at the hourly level. Environ Int 157:106859

    Article  CAS  PubMed  Google Scholar 

  23. Huang M, Chen J, Yang Y et al (2021) Effects of ambient air pollution on blood pressure among children and adolescents: a systematic review and meta-analysis. J Am Heart Assoc 10:e17734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jarup L, Babisch W, Houthuijs D et al (2008) Hypertension and exposure to noise near airports: the HYENA study. Environ Health Perspect 116:329–333

    Article  PubMed  Google Scholar 

  25. Kampfrath T, Maiseyeu A, Ying Z et al (2011) Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res 108:716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kempen EV, Casas M, Pershagen G, Foraster M (2018) WHO Environmental noise guidelines for the European region: a systematic review on environmental noise and cardiovascular and metabolic effects: a summary. Int J Environ Res Public Health 15:

  27. Kourieh A, Giorgis-Allemand L, Bouaoun L et al (2022) Incident hypertension in relation to aircraft noise exposure: results of the DEBATS longitudinal study in France. Occup Environ Med 79:268–276

    Article  PubMed  Google Scholar 

  28. Kroller-Schon S, Daiber A, Steven S et al (2018) Crucial role for Nox2 and sleep deprivation in aircraft noise-induced vascular and cerebral oxidative stress, inflammation, and gene regulation. Eur Heart J 39:3528–3539

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kuntic M, Kuntic I, Krishnankutty R et al (2023) Co-exposure to urban particulate matter and aircraft noise adversely impacts the cerebro-pulmonary-cardiovascular axis in mice. Redox Biol 59:102580

    Article  CAS  PubMed  Google Scholar 

  30. Kupcikova Z, Fecht D, Ramakrishnan R et al (2021) Road traffic noise and cardiovascular disease risk factors in UK biobank. Eur Heart J 42:2072–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kvandova M, Rajlic S, Stamm P et al (2023) Mitigation of aircraft noise-induced vascular dysfunction and oxidative stress by exercise, fasting, and pharmacological alpha1AMPK activation: molecular proof of a protective key role of endothelial alpha1AMPK against environmental noise exposure. Eur J Prev Cardiol 30:1554–1568

    Article  PubMed  Google Scholar 

  32. Lelieveld J, Klingmuller K, Pozzer A et al (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lelieveld J, Pozzer A, Poschl U et al (2020) Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res 116:1910–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller MR, Raftis JB, Langrish JP et al (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11:4542–4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Molitor M, Bayo-Jimenez MT, Hahad O et al (2023) Aircraft noise exposure induces pro-inflammatory vascular conditioning and amplifies vascular dysfunction and impairment of cardiac function after myocardial infarction. Cardiovasc Res 119:1416–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morishita M, Wang L, Speth K et al (2019) Acute blood pressure and cardiovascular effects of near-roadway exposures with and without N95 respirators. Am J Hypertens 32:1054–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Munzel T, Daiber A, Steven S et al (2017) Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. Eur Heart J 38:2838–2849

    Article  PubMed  PubMed Central  Google Scholar 

  38. Munzel T, Gori T, Al-Kindi S et al (2018) Effects of gaseous and solid constituents of air pollution on endothelial function. Eur Heart J 39:3543–3550

    Article  PubMed  PubMed Central  Google Scholar 

  39. Munzel T, Kroller-Schon S, Oelze M et al (2020) Adverse cardiovascular effects of traffic noise with a focus on nighttime noise and the new WHO noise guidelines. Annu Rev Public Health 41:309–328

    Article  PubMed  Google Scholar 

  40. Munzel T, Miller MR, Sorensen M et al (2020) Reduction of environmental pollutants for prevention of cardiovascular disease: it’s time to act. Eur Heart J 41:3989–3997

    Article  PubMed  PubMed Central  Google Scholar 

  41. Munzel T, Sorensen M, Daiber A (2021) Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol 18:619–636

    Article  PubMed  Google Scholar 

  42. Munzel T, Sorensen M, Gori T et al (2017) Environmental stressors and cardio-metabolic disease: part II—mechanistic insights. Eur Heart J 38:557–564

    PubMed  Google Scholar 

  43. Munzel T, Sorensen M, Gori T et al (2017) Environmental stressors and cardio-metabolic disease: part I—epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies. Eur Heart J 38:550–556

    PubMed  Google Scholar 

  44. Newman JD, Rajagopalan S, Levy P, Brook RD (2020) Clearing the air to treat hypertension. J Hum Hypertens 34:759–763

    Article  PubMed  PubMed Central  Google Scholar 

  45. Niu Z, Duan Z, Yu H et al (2022) Association between long-term exposure to ambient particulate matter and blood pressure, hypertension: an updated systematic review and meta-analysis. Int J Environ Health Res: 1–16

  46. Osborne MT, Naddaf N, Abohashem S et al (2021) A neurobiological link between transportation noise exposure and metabolic disease in humans. Psychoneuroendocrinology 131:105331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Palanivel R, Vinayachandran V, Biswal S et al (2020) Exposure to air pollution disrupts circadian rhythm through alterations in chromatin dynamics. iScience 23:101728

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poulsen AH, Sorensen M, Hvidtfeldt UA et al (2023) Concomitant exposure to air pollution, green space, and noise and risk of stroke: a cohort study from Denmark. Lancet Reg Health Eur 31:100655

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pozzer A, Anenberg SC, Dey S et al (2023) Mortality attributable to ambient air pollution: a review of global estimates. Geohealth 7:e2022GH000711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pozzer A, Dominici F, Haines A et al (2020) Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovasc Res 116:2247–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qin P, Luo X, Zeng Y et al (2021) Long-term association of ambient air pollution and hypertension in adults and in children: a systematic review and meta-analysis. Sci Total Environ 796:148620

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Rajagopalan S, Brauer M, Bhatnagar A et al (2020) Personal-level protective actions against particulate matter air pollution exposure: a scientific statement from the American Heart Association. Circulation 142:e411–e431

    Article  PubMed  Google Scholar 

  53. Rao X, Zhong J, Brook RD, Rajagopalan S (2018) Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxidants Redox Signal 28:797–818

    Article  CAS  Google Scholar 

  54. Renner RA, Gross VJ, Ernst A et al (2021) Epidemiological studies on the association between chronic exposure to road traffic noise and blood pressure: a systematic review with meta-analyses. Gesundheitswesen 83:384–397

    PubMed  Google Scholar 

  55. Schmidt F, Kolle K, Kreuder K et al (2015) Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease. Clin Res Cardiol 104:23–30

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt FP, Basner M, Kroger G et al (2013) Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults. Eur Heart J 34:3508–3514a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sorensen M, Raaschou-Nielsen O, Poulsen AH et al (2023) Long-term exposure to residential transportation noise and mortality: a nationwide cohort study. Environ Pollut 328:121642

    Article  PubMed  Google Scholar 

  58. Steven S, Frenis K, Kalinovic S et al (2020) Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension. Redox Biol: 101515

  59. Sun Q, Yue P, Ying Z et al (2008) Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK. Arterioscler Thromb Vasc Biol 28:1760–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walzer D, Gordon T, Thorpe L et al (2020) Effects of home particulate air filtration on blood pressure: a systematic review. Hypertension 76:44–50

    Article  CAS  PubMed  Google Scholar 

  61. Wojciechowska W, Januszewicz A, Drozdz T et al (2022) Blood pressure and arterial stiffness in association with aircraft noise exposure:long-term observation and potential effect of COVID-19 lockdown. Hypertension 79:325–334

    Article  CAS  PubMed  Google Scholar 

  62. Yang X, Jia X, Dong W et al (2018) Cardiovascular benefits of reducing personal exposure to traffic-related noise and particulate air pollution: a randomized crossover study in the Beijing subway system. Indoor Air

  63. Ying Z, Xu X, Bai Y et al (2014) Long-term exposure to concentrated ambient PM2.5 increases mouse blood pressure through abnormal activation of the sympathetic nervous system: a role for hypothalamic inflammation. Environ Health Perspect 122:79–86

    Article  PubMed  Google Scholar 

  64. Yu W, Ye T, Zhang Y et al (2023) Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: a machine learning modelling study. Lancet Planet Health 7:e209–e218

    Article  PubMed  Google Scholar 

  65. Zhao M, Xu Z, Guo Q et al (2022) Association between long-term exposure to PM2.5 and hypertension: a systematic review and meta-analysis of observational studies. Environ Res 204:112352

    Article  CAS  PubMed  Google Scholar 

  66. Zhao X, Sun Z, Ruan Y et al (2014) Personal black carbon exposure influences ambulatory blood pressure: air pollution and cardiometabolic disease (AIRCMD-China) study. Hypertension 63:871–877

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Münzel.

Ethics declarations

Interessenkonflikt

T. Münzel, A. Daiber und O. Hahad geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münzel, T., Daiber, A. & Hahad, O. Luftverschmutzung, Lärm und Hypertonie. Herz 49, 124–133 (2024). https://doi.org/10.1007/s00059-024-05234-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-024-05234-5

Schlüsselwörter

Keywords

Navigation