Skip to main content
Log in

Learning preference representations based on Choquet integrals for multicriteria decision making

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper concerns preference elicitation and learning of decision models in the context of multicriteria decision making. We propose an approach to learn a representation of preferences by a non-additive multiattribute utility function, namely a Choquet or bi-Choquet integral. This preference model is parameterized by one-dimensional utility functions measuring the attractiveness of consequences w.r.t. various point of views and one or two set functions (capacities) used to weight the coalitions and control the intensity of interactions among criteria, on the positive and possibly the negative sides of the utility scale. Our aim is to show how we can successively learn marginal utilities from properly chosen preference examples and then learn where the interactions matter in the overall model. We first present a preference elicitation method to learn spline representations of marginal utilities on every component of the model. Then we propose a sparse learning approach based on adaptive \(L_1\)-regularization for determining a compact Möbius representation fitted to the observed preferences. We present numerical tests to compare different regularization methods. We also show the advantages of our approach compared to basic methods that do not seek sparsity or that force sparsity a priori by requiring k-additivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

In this study, we mainly used synthetic datasets and we have explained in details how they have been generated ; it is not necessary to store them. For this reason, the datasets generated during the current study are not publicly available but are available from the corresponding author on reasonable request. All real-world datasets we use are publicly available.

References

  1. Roy, B.: Multicriteria Methodology for Decision Aiding, vol. 12. Springer Science & Business Media (1996)

    Google Scholar 

  2. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions, vol. 127. Cambridge University Press (2009)

    Book  Google Scholar 

  3. Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. European Journal of Operational Research 89(3), 445–456 (1996)

    Article  Google Scholar 

  4. Gagolewski, M., James, S., Beliakov, G.: Supervised learning to aggregate data with the Sugeno integral. IEEE Transactions on Fuzzy Systems 27(4), 810–815 (2019)

    Article  Google Scholar 

  5. Beliakov, G., Divakov, D.: On representation of fuzzy measures for learning Choquet and Sugeno integrals. Knowl. Based Syst. 189, 105134 (2020)

    Article  Google Scholar 

  6. Tehrani, A.F., Hüllermeier, E.: Ordinal Choquistic regression. In: 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13), pp. 842–849 (2013)

  7. Tehrani, A.F., Cheng, W., Hüllermeier, E.: Preference learning using the Choquet integral: the case of multipartite ranking. IEEE Transactions on Fuzzy Systems 20(6), 1102–1113 (2012)

    Article  Google Scholar 

  8. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57(3), 571–587 (1989)

    Article  MathSciNet  Google Scholar 

  9. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multicriteria decision aid. Annals of Operations Research 175(1), 247–286 (2010)

  10. Labreuche, C., Grabisch, M.: Generalized Choquet-like aggregation functions for handling bipolar scales. European Journal of Operational Research 172(3), 931–955 (2006)

    Article  MathSciNet  Google Scholar 

  11. Tversky, A., Kahneman, D.: An analysis of decision under risk. Econometrica 47(2), 263–292 (1979)

    Article  MathSciNet  Google Scholar 

  12. Martin, H., Perny, P.: New computational models for the Choquet integral. In: ECAI 2020, pp. 147–154 (2020)

  13. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. Syst. 18(1), 183–190 (1988)

    Article  MathSciNet  Google Scholar 

  14. Torra, V.: The weighted OWA operator. International Journal of Intelligent Systems 12(2), 153–166 (1997)

    Article  Google Scholar 

  15. Bana e Costa, C.A., Vansnick, J.-C.: A theoretical framework for measuring attractiveness by a categorical based evaluation technique (MACBETH). In: Multicriteria Analysis: Proceedings of the XIth International Conference on MCDM, pp. 15–24 (1997)

  16. Wakker, P., Deneffe, D.: Eliciting von Neumann-Morgenstern utilities when probabilities are distorted or unknown. Manag. Sci. 42(8), 1131–1150 (1996)

    Article  Google Scholar 

  17. Abdellaoui, M.: Parameter-free elicitation of utility and probability weighting functions. Manag. Sci. 46(11), 1497–1512 (2000)

    Article  Google Scholar 

  18. Herin, M., Perny, P., Sokolovska, N.: Learning sparse representations of preferences within choquet expected utility theory. In: Uncertainty in Artificial Intelligence, pp. 800–810 (2022). PMLR

  19. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. Eur. J. Oper. Res. 186(2), 766–785 (2008)

    Article  MathSciNet  Google Scholar 

  20. Tehrani, A.F., Labreuche, C., Hüllermeier, E.: Choquistic utilitaristic regression. In: DA2PL, pp. 35–42 (2014)

  21. Galand, L., Mayag, B.: A heuristic approach to test the compatibility of a preference information with a Choquet integral model. In: ADT, pp. 65–80 (2017)

  22. Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C., Sebag, M.: Neural representation and learning of hierarchical 2-additive Choquet integrals. In: IJCAI, pp. 1984–1991 (2020)

  23. Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246, 152–180 (2017)

    Article  MathSciNet  Google Scholar 

  24. Bourdache, N., Perny, P., Spanjaard, O.: Incremental elicitation of rank-dependent aggregation functions based on Bayesian linear regression. In: IJCAI-19-Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 2023–2029 (2019)

  25. Chateauneuf, A., Jaffray, J.-Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17(3), 263–283 (1989)

    Article  Google Scholar 

  26. Grabisch, M.: K-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92(2), 167–189 (1997)

    Article  MathSciNet  Google Scholar 

  27. Krantz, D.H., Tversky, A.: Conjoint-measurement analysis of composition rules in psychology. Psychol. Rev. 78(2), 151 (1971)

    Article  Google Scholar 

  28. Blavatskyy, P.: Error propagation in the elicitation of utility and probability weighting functions. Theory Decis. 60(2), 315–334 (2006)

    Article  MathSciNet  Google Scholar 

  29. Ramsay, J.O.: Monotone regression spline in action. Stat. Sci., 425–441 (1988)

  30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B. Stat. Methodol. (Methodological) 58(1), 267–88 (1996)

    MathSciNet  Google Scholar 

  31. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical learning with sparsity. Monogr. Stat. Appl. Probab. 143 (2015)

  32. Anderson, D.T., Price, S.R., Havens, T.C.: Regularization-based learning of the Choquet integral. In: FUZZ-IEEE, pp. 2519–2526 (2014)

  33. Adeyeba, T.A., Anderson, D.T., Havens, T.C.: Insights and characterization of l1-norm based sparsity learning of a lexicographically encoded capacity vector for the Choquet integral. In: FUZZ-IEEE, pp. 1–7 (2015)

  34. de Oliveira, H.E., Duarte, L.T., Romano, J.M.T.: Identification of the Choquet integral parameters in the interaction index domain by means of sparse modeling. Expert Syst. Appl. 187 (2022)

  35. Hurwicz, L.: The generalized Bayes minimax principle: a criterion for decision making under uncertainty. Cowles Comm. Discuss. Paper Stat. 335, 1950 (1951)

    Google Scholar 

  36. Wang, H., Li, G., Jiang, G.: Robust regression shrinkage and consistent variable selection through the LAD-lasso. J. Bus. Econ. Stat. 25(3), 347–355 (2007)

    Article  MathSciNet  Google Scholar 

  37. Gao, X., Huang, J.: Asymptotic analysis of high-dimensional LAD regression with lasso. Stat. Sin., 1485–1506 (2010)

  38. Zhao, P., Yu, B.: On model selection consistency of lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006)

    MathSciNet  Google Scholar 

  39. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  CAS  Google Scholar 

  40. van de Geer, S.: \(\ell \)1-regularization in high-dimensional statistical models. In: Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), pp. 2351–2369 (2010)

  41. Wu, X., Liang, R., Yang, H.: Penalized and constrained LAD estimation in fixed and high dimension. Stat. Papers, 1–43 (2022)

  42. Zheng, Q., Gallagher, C., Kulasekera, K.: Robust adaptive lasso for variable selection. Commun. Stat. Theory Methods 46(9), 4642–4659 (2017)

    Article  MathSciNet  Google Scholar 

  43. Xu, J., Ying, Z.: Simultaneous estimation and variable selection in median regression using lasso-type penalty. Ann. Inst. Stat. Math. 62, 487–514 (2010)

    Article  MathSciNet  PubMed  Google Scholar 

  44. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc., B: Stat. (methodological) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  45. Bresson, R.: Neural learning and validation of hierarchical multi-criteria decision aiding models with interacting criteria. PhD thesis, Université Paris-Saclay (2022)

  46. Herin, M., Perny, P., Sokolovska, N.: Learning preference models with sparse interactions of criteria. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 3786–3794 (2023)

  47. Keeney, R.L., Raiffa, H., Meyer, R.F.: Decisions with Multiple Objectives: Preferences and Value Trade-offs, Cambridge University Press (1993)

  48. Fishburn, P.C.: Interdependence and additivity in multivariate, unidimensional expected utility theory. Int. Econ. Rev. 8(3), 335–342 (1967)

    Article  Google Scholar 

  49. Gonzales, C., Perny, P.: GAI networks for utility elicitation. KR 4, 224–234 (2004)

    Google Scholar 

  50. Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proceedings of UAI, pp. 42–49 (2005)

Download references

Acknowledgements

We wish to thank the reviewers for their helpful comments on an earlier draft of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Herin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix we explain how equations on utilities (5)–(6) and (7)–(10) are derived from preference and indifference statements. The explanation is directly given for the bi-CIU model but can be adapted to the particular case of the CIU model by taking \(w=v\).

1.1 A.1   Utility elicitation with solvability

1.1.1 A.1.1   Utility elicitation below the neutral level with solvability assumption

Proposition 1

Let \(x_i,h_i \in X_i\) such that \(x_i \precsim _i \textbf{0}_i\) and \(h_i \precsim _i \textbf{0}_i\) and \( r_j\), \(R_j \in X_j\) such that \(\textbf{0}_j \precsim _j r_j \prec _j R_j\). Suppose that \((x_i, r_j, \textbf{0}_{-ij}) \sim (y_i, R_j, \textbf{0}_{-ij})\) and \((h_i, r_j, \textbf{0}_{-ij}) \sim (z_i, R_j, \textbf{0}_{-ij})\). Assuming \((\mathbf{-1}_i, \textbf{0}_{-i}) \prec \textbf{0}\), we have:

$$\begin{aligned} u_i(y_i) - u_i(x_i) = u_i(z_i) - u_i(y_i) \end{aligned}$$

Proof

From \((x_i, r_j, \textbf{0}_{-ij}) \!\!\sim \!\! (y_i, R_j, \textbf{0}_{-ij})\) we have: \(f^u_{v,w}(x_i, r_j, \textbf{0}_{-ij}) \!\!=\!\! f^u_{v,w}(y_i, R_j, \textbf{0}_{-ij})\). Also, since \(r_j \prec _j R_j\) we have \(y_i \prec _i x_i\). Moreover, since \(x_i \precsim _i \textbf{0}_i\) and \(\textbf{0}_j \precsim _j r_j \prec _j R_j\), we have \(u_i(y_i)< u_i(x_i) \le 0 \le u_j(r_j) < u_j(R_j) \) and therefore \(f^u_{v,w}(x_i, r_j, \textbf{0}_{-ij}) = u_j(r_j)v(\{j\}) + u_i(x_i) (1 - w(N\setminus \{i\}))\).

Similarly, we have: \(f^u_{v,w}(y_i, R_j, \textbf{0}_{-ij}) = u_j(R_j)v(\{j\}) + u_i(y_i) (1 - w(N\setminus \{i\})) \). Hence we have: \((u_i(x_i) - u_i(y_i)) (1 - w(N\setminus \{i\})) = (u_j(R_j)-u_j(r_j))v(\{j\})\).

Moreover, using the second indifference \((h_i, r_j, \textbf{0}_{-ij}) \sim (z_i, R_j, \textbf{0}_{-ij})\), we obtain \((u_i(h_i) - u_i(z_i)) (1 - w(N\setminus \{i\})) = (u_j(R_j)-u_j(r_j))v(\{j\})\). Then \((u_i(x_i) - u_i(y_i)) (1 - w(N\setminus \{i\})) = (u_i(h_i) - u_i(z_i)) (1 - w(N\setminus \{i\}))\). Assuming \((\mathbf{-1}_i, \textbf{0}_{-i}) \prec \textbf{0}\), i.e., \(w(N\setminus \{i\})< 1\) we obtain:

$$\begin{aligned} u_i(x_i) - u_i(y_i) = u_i(h_i) - u_i(z_i) \end{aligned}$$

\(\square \)

1.1.2 A.1.2   Utility elicitation above the neutral level with solvability assumption

Proposition 2

Let \(x_i,h_i \in X_i\) such that \(x_i \succsim \textbf{0}_i\) and \(h_i \succsim \textbf{0}_i\) and \(r_j,R_j \in X_j\) and \(x_i \in X_i\) such that \(r_j \prec _j R_j \precsim _j\textbf{0}_{j}\). Suppose that \((x_i, R_j, \textbf{0}_{-ij}) \sim (y_i, r_j, \textbf{0}_{-ij})\) and \((h_i, R_j, \textbf{0}_{-ij}) \sim (z_i, r_j, \textbf{0}_{-ij})\). Assuming \((\textbf{1}_i,\textbf{0}_{-i}) \succ \textbf{0}\), we have:

$$\begin{aligned} u_i(x_i) - u_i(y_i) = u_i(h_i) - u_i(z_i) \end{aligned}$$

Proof

From \((x_i, R_j, \textbf{0}_{-ij}) \sim (y_i, r_j, \textbf{0}_{-ij})\), we have: \(f^u_{v,w}(x_i, R_j, \textbf{0}_{-ij}) = f^u_{v,w}(y_i, r_j, \textbf{0}_{-ij})\). Since \(r_j \prec _j R_j\) we have \(x_i \prec _i y_i\). Moreover, since \(x_i \succsim _i \textbf{0}_i\) and \(r_j \prec _j R_j \precsim _j\textbf{0}_{j}\), we have \( u_j(r_j)< u_j(R_j) \le 0 \le u_i(x_i) < u_i(y_i)\) and therefore \(f^u_{v,w}(x_i, R_j, \textbf{0}_{-ij}) = u_i(x_i)v(\{i\}) + u_j(R_j) (1 - w(N\setminus \{j\})) \).

Similarly \(f^u_{v,w}(y_i, r_j, \textbf{0}_{-ij}) = u_i(y_i)v(\{i\}) + u_j(r_j) (1 - w(N\setminus \{j\})).\) Hence we have: \((u_i(y_i) - u_i(x_i)) v(\{i\}) = (u_j(R_j)-u_j(r_j))(1 -w(N\setminus \{j\}))\).

Moreover, using the second indifference \((h_i, R_j, \textbf{0}_{-ij}) \sim (z_i, r_j, \textbf{0}_{-ij})\), we obtain \((u_i(z_i) - u_i(h_i)) v(\{i\}) = (u_j(R_j)-u_j(r_j))(1 -w(N\setminus \{j\}))\). Then \((u_i(y_i) - u_i(x_i)) v(\{i\}) = (u_i(z_i) - u_i(h_i)) v(\{i\})\). Assuming \((\textbf{1}_i,\textbf{0}_{-i}) \succ \textbf{0}\), i.e., \(v(\{i\})>0\) we obtain:

$$\begin{aligned} u_i(y_i) - u_i(x_i) = u_i(z_i) - u_i(h_i) \end{aligned}$$

\(\square \)

1.2 A.2   Utility elicitation without solvability

1.2.1 A.2.1   Utility elicitation below the neutral level without solvability assumption

Proposition 3

Assume that the elements of \(X_i\) are denoted \(x_{i,k}\) and indexed according to their relative values: \(x_{i,k} \precsim _i x_{i,k+1}\), for any k. Let \(x_i,h_i \in X_i\) such that \(x_i \precsim _i \textbf{0}_i \) and \(h_i \precsim _i \textbf{0}_i \) and \(r_j\), \(R_j \in X_j\) such that \(\textbf{0}_j \precsim _j r_j \prec _j R_j\). Let k be the lower integer such that \((x_i, r_j, \textbf{0}_{-ij}) \precsim (x_{i,k+1}, R_j, \textbf{0}_{-ij})\) and \(k'\) the highest integer such that \((h_i, r_j, \textbf{0}_{-ij}) \succsim (x_{i,k'}, R_j, \textbf{0}_{-ij})\). Assuming \((\mathbf{-1}_i, \textbf{0}_{-i}) \prec \textbf{0}\), we have:

$$\begin{aligned} u_i(h_i) - u_i(z_i^-)\ge & {} u_i(x_i) - u_i(y_i^+) \\ u_i(h_i) - u_i(z_i^+)< & {} u_i(x_i) - u_i(y_i^-) \end{aligned}$$

where \(y_i^+ = x_{i,k+1}\), \(y_i^- = x_{i,k}\), \(z_i^- = x_{i,k'}\) and \(z_i^+ = x_{i,k'+1}\).

Proof

By construction \(y_i^-\) necessarily verifies the following strict preference: \((x_i, r_j, \textbf{0}_{-ij}) \succ (y_{i}^-, R_j, \textbf{0}_{-ij})\). Hence, with \((x_i, r_j, \textbf{0}_{-ij}) \precsim (y_i^{+}, R_j, \textbf{0}_{-ij})\), we obtain the following inequations: \((u_i(x_i) - u_i(y_i^+)) (1 - w(N\setminus \{i\})) \le (u_i(R_j)-u_i(r_j))v(\{j\})\) and \((u_i(x_i) - u_i(y_{i}^-)) (1 - w(N\setminus \{i\})) > (u_i(R_j)-u_i(r_j))v(\{j\})\).

Similarly, \(z_i^+\) verify \((h_i, r_j, \textbf{0}_{-ij}) \prec (z_i^+, R_j, \textbf{0}_{-ij})\). Hence, with \((h_i, r_j, \textbf{0}_{-ij}) \succsim (z_i^-, R_j, \textbf{0}_{-ij})\) we obtain the following inequations: \((u_i(h_i) - u_i(z_i^-) (1 - w(N\setminus \{i\})) \ge (u_i(R_j)-u_i(r_j))v(\{j\})\) and \((u_i(h_i) - u_i(z_i^+)) (1 - w(N\setminus \{i\})) < (u_i(R_j)-u_i(r_j))v(\{j\})\). Hence we have \((u_i(x_i) - u_i(y_i^+))(1 - w(N\setminus \{i\})) \le (u_i(R_j)-u_i(r_j))v(\{j\}) \le (u_i(h_i) - u_i(z_i^-)) (1 - w(N\setminus \{j\}))\).

Moreover, \((u_i(h_i) - u_i(z_i^+) (1 - w(N\setminus \{i\}))<(u_i(R)-u_i(r))v(\{j\}) < (u_i(x_i) - u_i(y_i^-) (1 - w(N\setminus \{i\}))\). Assuming \((\mathbf{-1}_i, \textbf{0}_{-i}) \prec \textbf{0}\), i.e., \(w(N\setminus \{i\})< 1\), we obtain:

$$\begin{aligned} u_i(h_i) - u_i(z_i^-)\ge & {} u_i(x_i) - u_i(y_i^+) \\ u_i(h_i) - u_i(z_i^+)< & {} u_i(x_i) - u_i(y_i^-) \end{aligned}$$

\(\square \)

1.2.2 A.2.2   Utility elicitation above the neutral level without solvability assumption

Proposition 4

Assume that the elements of \(X_i\) are denoted \(x_{i,k}\) and indexed according to their relative values: \(x_{i,k} \precsim _i x_{i,k+1}\), for any k. Let \(x_i,h_i \in X_i\) such that \(x_i \succsim _i \textbf{0}_i \) and \(h_i \succsim _i \textbf{0}_i \) and \(r_j\), \(R_j \in X_j\) such that \(r_j \prec _j R_j \precsim _j\textbf{0}_{j}\). Let k be the higher integer such that \( (x_i, R_j, \textbf{0}_{-ij}) \succsim (x_{i,k}, r_j, \textbf{0}_{-ij})\) and \(k'\) the lower integer such that \((h_i, R_j, \textbf{0}_{-ij}) \precsim (x_{i,k+1}, r_j, \textbf{0}_{-ij})\). Assuming \((\textbf{1}_i,\textbf{0}_{-i}) \succ \textbf{0}\), we have:

$$\begin{aligned} u_i(h_i) - u_i(z_i^+)\le & {} u_i(x_i)- u_i(y_i^-) \\ u_i(h_i) - u_i(z_i^-)> & {} u_i(x_i) -u_i(y_i^+) \end{aligned}$$

where \(y_i^+ = x_{i,k+1}\), \(y_i^- = x_{i,k}\), \(z_i^- = x_{i,k'}\) and \(z_i^+ = x_{i,k'+1}\).

Proof

By construction \(y^{+}_i\) necessarily verifies the following strict preference: \( (x_i, R_j, \textbf{0}_{-ij}) \prec (y^{+}_i, r_j, \textbf{0}_{-ij})\). Hence, with \( (x_i, R_j, \textbf{0}_{-ij}) \succsim (y_i^-, r_j, \textbf{0}_{-ij})\), we obtain the following inequations: \((u_i(x_i) - u_i(y_i^-) )v(\{i\}) \ge (u_i(r_j)-u_i(R_j)) (1 - w(N\setminus \{j\}))\) and \((u_i(x_i) - u_i(y_i^+) )v(\{i\}) < (u_i(r_j)-u_i(R_j)) (1 - w(N\setminus \{j\}))\).

Similarly \(z_i^-\) verify \( (h_i, R_j, \textbf{0}_{-ij}) \succ (z^{-}_i, r_j, \textbf{0}_{-ij}) \). Hence, with \((h_i, R_j, \textbf{0}_{-ij}) \precsim (z_{i}^+, r_j, \textbf{0}_{-ij})\), we obtain the following inequations: \((u_i(h_i) - u_i(z_i^+) )v(\{i\}) \le (u_i(r_j)-u_i(R_j)) (1 - w(N\setminus \{j\}))\) and \((u_i(h_i) - u_i(z_i^-) )v(\{i\}) > (u_i(r_j)-u_i(R_j)) (1 - w(N\setminus \{j\}))\). Hence we have \((u_i(h_i) - u_i(z_i^+) )v(\{i\}) \le (u_i(R_j)-u_i(r_j)) (1 - w(N\setminus \{j\})) \le ( u_i(x_i)- u_i(y_i^-) )v(\{i\})\). Moreover, \((u_i(x_i) -u_i(y_i^+) )v(\{i\})< (u_i(R_j)-u_i(r_j)) (1 - w(N\setminus \{j\})) < (u_i(h_{i}) - u_i(z_i^-) )v(\{i\})\). Assuming \((\textbf{1}_i,\textbf{0}_{-i}) \succ \textbf{0}\), i.e., \(v(\{i\})>0\), we obtain:

$$\begin{aligned} u_i(h_i) - u_i(z_i^+)\le & {} u_i(x_i)- u_i(y_i^-) \\ u_i(h_i) - u_i(z_i^-)> & {} u_i(x_i) -u_i(y_i^+) \end{aligned}$$

\(\square \)

Appendix B

In the following, we use the convention that for any subset \(B \subseteq N\), \(\int _{\mathcal {I}_B} f(z_1, \ldots ,z_n)dz_B\) denotes the multiple integral of the function f w.r.t. the arguments \(z_i,i \in B\) on the hypercube \(\mathcal {I}_B = [0,1]^{|B |}\).

Lemma 5

Let \( B \subseteq N \setminus \emptyset \) and \( k \in \mathbb {N}^*\), then the following equality holds:

$$\begin{aligned} \int _{\mathcal {I}_B} \min _{i \in B }\{z_i\}^kdz_B = \frac{k!}{ \prod _{i=1}^k( |B |+i)} \end{aligned}$$

Proof

Consider \( |B |\) random variables \((Z_i)_{i\in B}\) independent and identically distributed according a uniform distribution within [0, 1]. It can be easily shown that the random variable \(Y = \min _{i\in B}\{Z_i\}\) admits the following density function:

$$f_Y(y) = {\left\{ \begin{array}{ll} |B |(1-y)^{|B |-1} \text { if } y \in [0,1]\\ 0 \text { else. } \end{array}\right. }$$

Then we obtain:

$$\begin{aligned} \mathbb {E}[ Y^k] =\int _0^1y^k|B |(1-y)^{|B |-1}dy&= k \int _0^1 y^{k-1}(1-y)^{|B |}dy\\&= k(k-1) \int _0^1 y^{k-2}\frac{(1-y)^{|B |+1}}{|B |+1}dy \\ {}&=\ldots \\ {}&=k! \int _0^1y^{k-k}\frac{(1-y)^{|B |+k-1}}{\prod _{i=1}^{k-1}( |B |+i)}dy \\ {}&=\frac{k!}{\prod _{i=1}^{k-1}( |B |+i)}\frac{1}{(|B |+ k)} = \frac{k!}{\prod _{i=1}^{k}( |B |+i)} \end{aligned}$$

Finally, we conclude:

$$ \int _{\mathcal {I}_B} \min _{i \in B }\{z_i\}^kdz_B = \mathbb {E}[ \min _{i \in B}\{Z_i \}^k] =\mathbb {E}[ Y^k] = \frac{k!}{\prod _{i=1}^{k}( |B |+i)}$$

\(\square \)

Lemma 6

Let \(n \le 3\) and \( B_1,B_2 \subseteq N \) such that \( B_1 \cap B_2 = \emptyset \) and \( B_2 \ne \emptyset \). For any vector \((z_{j})_{j\in B_2}\) taking values in [0, 1], the following equality holds:

$$\begin{aligned} \int _{\mathcal {I}_{B_1}} \min _{i \in B_2 \cup B_1}\{z_i\} dz_{B_1} = \wedge _{B_2}- \frac{|B_1 |\wedge _{B_2}^2}{2} + \frac{|B_1 |(|B_1 |-1)^+\wedge _{B_2}^3}{6} \end{aligned}$$

with \(\wedge _{B_2} = \min _{i \in B_2 }\{z_i\}\) and \(x^+ = \max \{0,x\}\).

Proof

Firstly, for any \(A\subseteq N\setminus \emptyset \), any vector \((z_i)_{i \in A}\) valued in [0, 1] and any \(k \in \mathbb {N}\), we have:

$$\begin{aligned} \int _0^1 \min \{x, \wedge _A\}^kdx&= \int _0^{\wedge _A} \min \{x, \wedge _A\}^kdx+ \int _{\wedge _A}^ 1 \min \{x, \wedge _A\}^kdx \nonumber \\ {}&=\int _0^{\wedge _A} x^k dx+ \int _{\wedge _A}^ 1 \wedge _A^k = \frac{\wedge _A^{k+1}}{k+1} +(1-\wedge _A)\wedge _A^k \nonumber \\ {}&= \wedge _A^k -\frac{k}{k+1}\wedge _A^{k+1} \end{aligned}$$
(1)

where \(\wedge _A =\min _{i \in A}\{z_i\}\).

Remark that for \(B_1 = \emptyset \), the left-hand term boils down to \(\wedge _{B_2}\) which equals the right-hand term for \(|B_1 |= 0\). Suppose now that \( B_1 \ne \emptyset \). Since \(n \le 3\), \( B_2 \ne \emptyset \) and \(B_1 \cap B_2 = \emptyset \), \(B_1\) is necessarily a singleton or a pair, then we have: \(|B_1 |\in \{1, 2\} \).

Then let \((\pi _1, \ldots , \pi _{|B_1 |})\) be any ordering of the elements of \(B_1\). Using (B1) with \(A = (B_1 \cup B_2)\setminus \{ \pi _1\}\), \(x=z_{\pi _1}\) and \(k=1\), we have:

$$\begin{aligned}&\int _{\mathcal {I}_{B_1}} \min _{i \in B_2 \cup B_1}\{z_i\}dz_{B_1} = \int _{\mathcal {I}_{ B_1\setminus \{\pi _1\}}} \Big ( \int _0^1 \min _{i \in B_2 \cup B_1}\{z_i\} dz_{\pi _1}\Big )dz_{ B_1\setminus \{\pi _1\}}\\&= \int _{\mathcal {I}_{ B_1\setminus \{\pi _1\}}} \Big (\wedge _{(B_1 \cup B_2 )\setminus \{ \pi _1\}} -\frac{\wedge _{(B_1 \cup B_2 )\setminus \{ \pi _1\}}^2}{2}\Big )dz_{ B_1\setminus \{\pi _1\}} \end{aligned}$$

Then if \(|B_1 |= 1\), we have \(B_1 \setminus \{ \pi _1 \} = \emptyset \) and therefore we obtain:

$$\begin{aligned} \int _{\mathcal {I}_{B_1}} \min _{i \in B_2 \cup B_1}\{z_i\} dz_{B_1}&= \wedge _{(B_1 \cup B_2)\setminus \{ \pi _1\}} -\frac{\wedge _{(B_1 \cup B_2) \setminus \{ \pi _1\}}^2}{2} \\ {}&=\wedge _{B_2}- \frac{|B_1 |\wedge _{B_2}^2}{2} + \frac{|B_1 |(|B_1 |-1)^+\wedge _{B_2}^3}{6} \end{aligned}$$

Finally, if \(|B_1 |= 2\), we have \(B_1 \setminus \{ \pi _1 \} = \{ \pi _2 \}\) and using (B1) for \(A = (B_1 \cup B_2) \setminus \{ \pi _1,\pi _2\} = B_2\), \(x=z_{\pi _2}\) and \(k\in \{1,2\}\), we obtain:

$$\begin{aligned} \int _{\mathcal {I}_{B_1}} \min _{i \in B_2 \cup B_1}\{z_i\} dz_{B_1}&= \int _0^1 \Big (\wedge _{(B_1 \cup B_2) \setminus \{ \pi _1\}} -\frac{\wedge _{(B_1 \cup B_2) \setminus \{ \pi _1\}}^2}{2}\Big )dz_{\pi _2} \\ {}&= \int _0^1 \Big (\min _{i \in B_2 \cup \{ \pi _2\}}\{z_i\} -\frac{\min _{i \in B_2 \cup \{ \pi _2\}}\{z_i\}^2}{2}\Big )dz_{\pi _2} \\ {}&= \wedge _{B_2}- \frac{|B_1 |\wedge _{B_2}^2}{2} + \frac{|B_1 |(|B_1 |-1)^+\wedge _{B_2}^3}{6} \end{aligned}$$

\(\square \)

Proposition 7

Let \(n \le 3\). Assume that the features \((\phi _j)_{j=1}^{2^n}\) are defined such that \(\phi _j = \min _{ i \in \rho ^{-1}(j)}\{Z_i\}\) where \((Z_i)_{i \in N}\) are i.i.d. random variables such that \(Z_i \sim \mathcal {U}([0,1])\) for any \(i \in N\). Then, for any pair of criteria coalition \(S_1,S_2 \subseteq N \setminus \emptyset \) of cardinals \(|S_1|= s_1\),\(|S_2|= s_2\) and \(|S_1 \cap S_2|= s_{12} \ne 0\), the covariance between \(\phi _{\rho (S_1)}\) and \(\phi _{\rho (S_2)}\) reads as follows:

$$\begin{aligned} Cov(\phi _{\rho (S_1)},\phi _{\rho (S_2)}) =\sum _{k=1}^3g_k(s_{12})\gamma _k(s_1,s_2,s_{12})-\frac{1}{(s_1 + 1)(s_2 + 1)} \end{aligned}$$

with \(g_k(s_{12}) = \frac{k!}{\prod _{i=1}^k(s_{12}+i)}\), \(\gamma _1= 1\), \(\gamma _2(s_1,s_2,s_{12}) =-\frac{1}{2}((s_1-s_{12})^++(s_2-s_{12})^+)\) and \(\gamma _3(s_1,s_2,s_{12}) = \frac{1}{4}((s_1-s_{12})^+(s_2-s_{12})^+ ) +\frac{1}{6}((s_1-s_{12})^+(s_1-s_{12}-1)^++(s_2-s_{12})^+(s_2-s_{12}-1)^+)\) where \(x^+ = \max \{x, 0\}\).

Proof

Let \(S_1, S_2 \subseteq N \setminus \emptyset \) such that \(S_1 \cap S_2 \ne 0\). Firstly, recall that:

$$ Cov(\phi _{\rho (S_1)},\phi _{\rho (S_2)}) = \mathbb {E}[\phi _{\rho (S_1)} \phi _{\rho (S_2)} ] - \mathbb {E}[\phi _{\rho (S_1)}]\mathbb {E}[\phi _{\rho (S_2)}]$$

Also, since the variables \((Z_i)_{i \in N}\) are independent and identically distributed according a uniform distribution within [0, 1], for any \(S \subseteq N\), we have:

$$\begin{aligned} \mathbb {E}[\phi _{\rho (S)}]= \int _{\mathcal {I}_S} \min _{i \in S}\{z_i\} dz_S \end{aligned}$$

Then using Lemma 5 for \(k=1\) and \(B =S\), we obtain:

$$\begin{aligned} \mathbb {E}[\phi _{\rho (S)}]= \frac{1}{|S |+ 1} \end{aligned}$$
(2)

Moreover, since \(S_1 \cap S_2 \ne \emptyset \), we have:

$$\begin{aligned}&\mathbb {E}[\phi _{\rho (S_1)} \phi _{\rho (S_2)}] = \mathbb {E}[\min _{ i \in S_1}\{Z_i\}\min _{ i \in S_2}\{Z_i\}]\\&= \int _{\mathcal {I}_{S_1 \cup S_2}} \min _{i \in S_1}\{z_i\} \min _{i \in S_2}\{z_i\} dz_{ S_1 \cup S_2} \\&= \int _{\mathcal {I}_{S_2}} \min _{i \in S_2}\{z_i\} \Big ( \int _{\mathcal {I}_{S_1 \setminus S_1 \cap S_2}}\min _{i \in S_1}\{z_i\} dz_{ S_1 \setminus (S_1 \cap S_2) }\Big ) dz_{S_2} \end{aligned}$$

Then, using Lemma 6 sequentially for \(B_1 = S_1 \setminus (S_1 \cap S_2) \), \(B_2 = S_1 \cap S_2 \) and \(B_1 = S_2\setminus (S_1 \cap S_2) \), \(B_2 = S_1 \cap S_2 \), we obtain:

$$\begin{aligned}&\mathbb {E}[\phi _{\rho (S_1)} \phi _{\rho (S_2)}] = \int _{\mathcal {I}_{S_1 \cap S_2}}\Big ( \int _{\mathcal {I}_{S_2 \setminus (S_1 \cap S_2)}}\min _{i \in S_2}\{z_i\} \Big (\wedge _{S_1 \cap S_2}-\frac{(s_1-s_{12})^+\wedge _{S_1 \cap S_2}^2}{2}\\ {}&+\frac{(s_1-s_{12})^+(s_1-s_{12}-1)^+\wedge _{S_1 \cap S_2}^3}{6} \Big )dz_{ S_2 \setminus (S_1 \cap S_2)} \Big ) dz_{S_1 \cap S_2} \\ {}&= \int _{\mathcal {I}_{S_1 \cap S_2}} \Big (\wedge _{S_1 \cap S_2}-\frac{(s_1-s_{12})^+\wedge _{S_1 \cap S_2}^2}{2}+\frac{(s_1-s_{12})^+(s_1-s_{12}-1)^+\wedge _{S_1 \cap S_2}^3}{6} \Big )\\&\Big (\wedge _{S_1 \cap S_2}-\frac{(s_2-s_{12})^+\wedge _{S_1 \cap S_2}^2}{2}+\frac{(s_2-s_{12})^+(s_2-s_{12}-1)^+\wedge _{S_1 \cap S_2}^3}{6} \Big ) dz_{S_1 \cap S_2} \\ \end{aligned}$$

where \(\wedge _{S_1 \cap S_2} = \min _{i \in S_1 \cap S_2}\{z_i\}\) for any vector \((z_i)_{i \in S_1 \cap S_2}\) valued in [0, 1]. This expression can be simplified remarking that since \(n \le 3\) and \(S_1 \cap S_2 \ne \emptyset \), we have that the cross products \((s_2-s_{12})^+(s_2-s_{12}-1)^+(s_1-s_{12})^+(s_1-s_{12}-1)^+\), \((s_2-s_{12})^+(s_2-s_{12}-1)^+(s_1-s_{12})^+\) and \((s_1-s_{12})^+(s_1-s_{12}-1)^+(s_2-s_{12})^+\) necessarily equal zero. Finally, using Lemma 5 for \(B = S_1 \cap S_2\) and \(k \in \{2,3,4\}\), we obtain that:

$$\begin{aligned}&\mathbb {E}[\phi _{\rho (S_1)} \phi _{\rho (S_2)}] = g_2(s_{12})-g_3(s_{12})\frac{1}{2}((s_1-s_{12})^++(s_2-s_{12})^+) \nonumber \\ {}&+g_4(s_{12})(\frac{1}{4}((s_1-s_{12})^+(s_2-s_{12})^+ ) \nonumber \\ {}&+\frac{1}{6}((s_1-s_{12})^+(s_1-s_{12}-1)^++(s_2-s_{12})^+(s_2-s_{12}-1)^+)) \end{aligned}$$
(3)

with \(g_k(s_{12}) = \frac{k!}{\prod _{i=1}^k(s_{12}+i)}\). We obtain the final result by combining (B3) and (B2). \(\square \)

Proposition 8

Suppose that \(n=3\) and that the underlying model \(\beta ^*\) is such that \(A_1= \{\{1\},\{ 2 \}, \{3\}, \{ 1,2,3 \}\}\), \(A_2 = \{\{ 1,2\},\{ 1,3\}, \{ 2,3\}\} \) and \({{\,\textrm{sign}\,}}(\beta _{A_1}^*) = { \textbf{1}}\). Assume also that the features \((\phi _j)_{j=1}^{2^n}\) are defined such that \(\phi _j = \min _{ i \in \rho ^{-1}(j)}\{Z_i\}\) where \((Z_i)_{i \in N}\) are i.i.d. random variables such that \(Z_i \sim \mathcal {U}([0,1])\) for any \(i \in N\). Then, Condition (19) boils down to:

$$\begin{aligned} |2V_{1,2}^1(V_{3,3}^3-V_{1,3}^1)+V_{2,3}^2(V_{1,1}^1-3V_{1,3}^1) |< |V_{3,3}^3V_{1,1}^1-3(V_{1,3}^1)^2|\end{aligned}$$

where \(V_{j,k}^{l} = Cov(\phi _{\rho (S_1)},\phi _{\rho (S_2)})= C_{\rho (S_1),\rho (S_2)}\) for any pair of criteria coalition \(S_1,S_2 \subseteq N\) such that \(j = |S_1 |\), \(k = |S_2 |\) and \(l = |S_1 \cap S_2 |\).

Proof

Since the random variables \((Z_i)_{i \in N}\) are supposed independent, for any pair of criteria coalition \(S_1, S_2 \subseteq N\) such that \(S_1 \cap S_2 = \emptyset \), we have: \(Cov(\phi _{\rho (S_1)},\phi _{\rho (S_2)})= 0\). Also, indexing the columns and rows of \(C_{11}\) and \(C_{21}\) in the lexicographical order, we have:

$$C_{11} = \begin{pmatrix} V_{1,1}^1&{}0&{}0&{}V_{1,3}^1 \\ 0&{}V_{1,1}^1&{}0&{}V_{1,3}^1\\ 0&{}0&{}V_{1,1}^1&{}V_{1,3}^1 \\ V_{1,3}^1&{}V_{1,3}^1&{}V_{1,3}^1&{}V_{3,3}^3 \end{pmatrix} \text { and } C_{21} = \begin{pmatrix} V_{1,2}^1 &{} V_{1,2}^1 &{} 0 &{} V_{2,3}^2 \\ V_{1,2}^1&{} 0 &{} V_{1,2}^1&{}V_{2,3}^2\\ 0&{}V_{1,2}^1&{} V_{1,2}^1 &{}V_{2,3}^2 \\ \end{pmatrix} $$

Then \(C_{11}\) can be rewritten as a block-matrix as follows:

$$ C_{11} = \begin{pmatrix} M_{1}&{}M_2^T \\ M_2&{}M_3 \\ \end{pmatrix}\text { with } M_1 = \begin{pmatrix} V_{1,1}^1&{}0&{}0 \\ 0&{}V_{1,1}^1&{}0\\ 0&{}0&{}V_{1,1}^1 \\ \end{pmatrix}, M_2 = \begin{pmatrix} V_{1,3}^1&V_{1,3}^1&V_{1,3}^1 \end{pmatrix}, M_3 =\begin{pmatrix} V_{3,3}^3 \end{pmatrix} $$

Since \(C_{11}\) is the covariance matrix of the random variables \((\phi _j)_{j \in A_1}\) it is a positive semi-definite matrix. Also, remarking that \(M_1\) is inversible and using Proposition 5, one can compute the Schur complement \(S = M_3 - M_2^TM_1^{-1}M_2 = \frac{V_{3,3}^3V_{1,1}^1-3V_{1,3}^1}{V_{1,1}^1} \ne 0\) and obtain that \(C_{11}\) is a positive definite matrix the inverse of which reads as follows:

$$\begin{aligned} C_{11}^{-1}&= \begin{pmatrix} M_1^{-1}+M_1^{-1}M_2^TS^{-1}M_2M_1^{-1}&{} -M_1^{-1}M_2^TS^{-1} \\ -S^{-1}M_2M_1^{-1}&{}S^{-1} \end{pmatrix}\\&= \frac{1}{SV_{1,1}^1} \begin{pmatrix} S + \frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}\frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}\frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}-V_{1,3}^1 \\ \frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}S + \frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}\frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}-V_{1,3}^1\\ \frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}\frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}S + \frac{(V_{1,3}^1)^2}{V_{1,1}^1}&{}-V_{1,3}^1\\ -V_{1,3}^1 &{} - V_{1,3}^1 &{} -V_{1,3}^1 &{} V_{1,1}^1 \end{pmatrix} \end{aligned}$$

Then we finally obtain:

$$C_{21}C_{11}^{-1}{{\,\textrm{sign}\,}}(\beta ^*_{A_1}) = \frac{2V_{1,2}^1(V_{3,3}^3-V_{1,3}^1)+V_{2,3}^2(V_{1,1}^1-3V_{1,3}^1)}{V_{3,3}^3V_{1,1}^1-3(V_{1,3}^1)^2} \begin{pmatrix} 1 \\ 1 \\ 1\\ \end{pmatrix}$$

Therefore Condition (19) is satisfied if and only if \( |2V_{1,2}^1(V_{3,3}^3-V_{1,3}^1)+V_{2,3}^2(V_{1,1}^1-3V_{1,3}^1) |< |V_{3,3}^3V_{1,1}^1-3(V_{1,3}^1)^2|\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herin, M., Perny, P. & Sokolovska, N. Learning preference representations based on Choquet integrals for multicriteria decision making. Ann Math Artif Intell (2024). https://doi.org/10.1007/s10472-024-09930-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10472-024-09930-0

Keywords

Navigation