Skip to main content
Log in

MDGA2 Constrains Glutamatergic Inputs Selectively onto CA1 Pyramidal Neurons to Optimize Neural Circuits for Plasticity, Memory, and Social Behavior

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Südhof TC. Synaptic neurexin complexes: A molecular code for the logic of neural circuits. Cell 2017, 171: 745–769.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siddiqui TJ, Craig AM. Synaptic organizing complexes. Curr Opin Neurobiol 2011, 21: 132–143.

    Article  CAS  PubMed  Google Scholar 

  3. Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 2010, 30: 7495–7506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Craig AM, Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 2007, 17: 43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao X, Tabuchi K. Functions of synapse adhesion molecules neurexin/neuroligins and neurodevelopmental disorders. Neurosci Res 2017, 116: 3–9.

    Article  CAS  PubMed  Google Scholar 

  6. Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008, 455: 903–911.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K. Neuroligins determine synapse maturation and function. Neuron 2006, 51: 741–754.

    Article  CAS  PubMed  Google Scholar 

  8. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 2004, 119: 1013–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pettem KL, Yokomaku D, Luo L, Linhoff MW, Prasad T, Connor SA, et al. The specific α-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development. Neuron 2013, 80: 113–128.

    Article  CAS  PubMed  Google Scholar 

  10. Siddiqui TJ, Tari PK, Connor SA, Zhang P, Dobie FA, She K, et al. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron 2013, 79: 680–695.

    Article  CAS  PubMed  Google Scholar 

  11. Budreck EC, Scheiffele P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 2007, 26: 1738–1748.

    Article  PubMed  Google Scholar 

  12. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 2007, 54: 919–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song JY, Ichtchenko K, Südhof TC, Brose N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A 1999, 96: 1100–1105.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varoqueaux F, Jamain S, Brose N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 2004, 83: 449–456.

    Article  CAS  PubMed  Google Scholar 

  15. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, et al. Binding of neuroligins to PSD-95. Science 1997, 277: 1511–1515.

    Article  CAS  PubMed  Google Scholar 

  16. Levinson JN, Chéry N, Huang K, Wong TP, Gerrow K, Kang R, et al. Neuroligins mediate excitatory and inhibitory synapse formation: Involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 2005, 280: 17312–17319.

    Article  CAS  PubMed  Google Scholar 

  17. Fertan E, Wong AA, Purdon MK, Weaver ICG, Brown RE. The effect of background strain on the behavioral phenotypes of the Mdga2+ /- mouse model of autism spectrum disorder. Genes Brain Behav 2021, 20: e12696.

    Article  CAS  PubMed  Google Scholar 

  18. Pettem KL, Yokomaku D, Takahashi H, Ge Y, Craig AM. Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development. J Cell Biol 2013, 200: 321–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee K, Kim Y, Lee SJ, Qiang Y, Lee D, Lee HW, et al. MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development. Proc Natl Acad Sci USA 2013, 110: 336–341.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Connor SA, Elegheert J, Xie Y, Craig AM. Pumping the brakes: Suppression of synapse development by MDGA-neuroligin interactions. Curr Opin Neurobiol 2019, 57: 71–80.

    Article  CAS  PubMed  Google Scholar 

  21. Connor SA, Ammendrup-Johnsen I, Kishimoto Y, Karimi Tari P, Cvetkovska V, Harada T, et al. Loss of synapse repressor MDGA1 enhances perisomatic inhibition, confers resistance to network excitation, and impairs cognitive function. Cell Rep 2017, 21: 3637–3645.

    Article  CAS  PubMed  Google Scholar 

  22. Connor SA, Ammendrup-Johnsen I, Chan AW, Kishimoto Y, Murayama C, Kurihara N, et al. Altered cortical dynamics and cognitive function upon haploinsufficiency of the autism-linked excitatory synaptic suppressor Mdga2. Neuron 2016, 91: 1052–1068.

    Article  CAS  PubMed  Google Scholar 

  23. Wang R, Dong JX, Wang L, Dong XY, Anenberg E, Jiang PF, et al. A negative regulator of synaptic development: MDGA and its links to neurodevelopmental disorders. World J Pediatr 2019, 15: 415–421.

    Article  CAS  PubMed  Google Scholar 

  24. Litwack ED, Babey R, Buser R, Gesemann M, O’Leary DD. Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci 2004, 25: 263–274.

    Article  CAS  PubMed  Google Scholar 

  25. Elegheert J, Cvetkovska V, Clayton AJ, Heroven C, Vennekens KM, Smukowski SN, et al. Structural mechanism for modulation of synaptic neuroligin-neurexin signaling by MDGA proteins. Neuron 2017, 96: 242–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gangwar SP, Zhong X, Seshadrinathan S, Chen H, Machius M, Rudenko G. Molecular mechanism of MDGA1: Regulation of neuroligin 2: Neurexin trans-synaptic bridges. Neuron 2017, 94: 1132–1141.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JA, Kim D, Won SY, Han KA, Park D, Cho E, et al. Structural insights into modulation of neurexin-neuroligin trans-synaptic adhesion by MDGA1/neuroligin-2 complex. Neuron 2017, 94: 1121–1131.e6.

    Article  CAS  PubMed  Google Scholar 

  28. Kähler AK, Djurovic S, Kulle B, Jönsson EG, Agartz I, Hall H, et al. Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. Am J Med Genet B Neuropsychiatr Genet 2008, 147B: 1089–1100.

    Article  PubMed  Google Scholar 

  29. Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI, Sonnenblick LI, et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet 2009, 5: e1000536.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol 2009, 19: 231–234.

    Article  CAS  PubMed  Google Scholar 

  31. Loh KH, Stawski PS, Draycott AS, Udeshi ND, Lehrman EK, Wilton DK, et al. Proteomic analysis of unbounded cellular compartments: Synaptic clefts. Cell 2016, 166: 1295–1307.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, et al. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. Elife 2022, 11: e75233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim J, Kim S, Kim H, Hwang IW, Bae S, Karki S, et al. MDGA1 negatively regulates amyloid precursor protein-mediated synapse inhibition in the hippocampus. Proc Natl Acad Sci USA 2022, 119: e2115326119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang SH, Liu WZ, Qin X, Guo CY, Xiong QC, Wang Y, et al. Association of increased amygdala activity with stress-induced anxiety but not social avoidance behavior in mice. Neurosci Bull 2022, 38: 16–28.

    Article  PubMed  Google Scholar 

  35. Bemben MA, Sandoval M, Le AA, Won S, Chau VN, Lauterborn JC, et al. Contrasting synaptic roles of MDGA1 and Mdga2. bioRxiv 2023. https://doi.org/10.1101/2023.05.25.542333.

  36. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature 2014, 511: 348–352.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science 2006, 313: 1093–1097.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Bliss TV, Collingridge GL. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361: 31–39.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Hossain MR, Jamal M, Tanoue Y, Ojima D, Takahashi H, Kubota T, et al. MDGA1-deficiency attenuates prepulse inhibition with alterations of dopamine and serotonin metabolism: An ex vivo HPLC-ECD analysis. Neurosci Lett 2020, 716: 134677.

    Article  CAS  PubMed  Google Scholar 

  40. Broadbent NJ, Gaskin S, Squire LR, Clark RE. Object recognition memory and the rodent hippocampus. Learn Mem 2010, 17: 5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wan H, Aggleton JP, Brown MW. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 1999, 19: 1142–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parkinson JK, Murray EA, Mishkin M. A selective mnemonic role for the hippocampus in monkeys: Memory for the location of objects. J Neurosci 1988, 8: 4159–4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Winocur G, Gilbert M. The hippocampus, context, and information processing. Behav Neural Biol 1984, 40: 27–43.

    Article  CAS  PubMed  Google Scholar 

  44. Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 1997, 88: 615–626.

    Article  CAS  PubMed  Google Scholar 

  45. Dahlhaus R, Hines RM, Eadie BD, Kannangara TS, Hines DJ, Brown CE, et al. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Hippocampus 2010, 20: 305–322.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ann Marie Craig for her early guidance and vision. This work was supported by the National Natural Science Foundation of China (82001203, 82173819, 81871012, and 81571263), the Scientific Research Fund of Zhejiang Provincial Education Department (Y201839276), the Scientific Research Foundation of Zhejiang University City College (X-202103), the R&D Project of Zhejiang (2022C03034), the Natural Science Foundation of Zhejiang Province (LQ23C090001), and a Canada Research Chair Award (P2018-0246).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kewen Jiang, Steven A. Connor or Yicheng Xie.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 978 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lin, D., Jiang, J. et al. MDGA2 Constrains Glutamatergic Inputs Selectively onto CA1 Pyramidal Neurons to Optimize Neural Circuits for Plasticity, Memory, and Social Behavior. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-023-01171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-023-01171-1

Keywords

Navigation