Skip to main content
Log in

Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The Janus kinases (JAK) are crucial targets in drug development for several diseases. However, accounting for the impact of possible structural rearrangements on the binding of different kinase inhibitors is complicated by the extensive conformational variability of their catalytic kinase domain (KD). The dynamic KD contains mainly four prominent mobile structural motifs: the phosphate-binding loop (P-loop), the αC-helix within the N-lobe, the Asp-Phe-Gly (DFG) motif, and the activation loop (A-loop) within the C-lobe. These distinct structural orientations imply a complex signal transmission path for regulating the A-loop’s flexibility and conformational preference for optimal JAK function. Nevertheless, the precise dynamical features of the JAK induced by different types of inhibitors still remain elusive. We performed comparative, microsecond-long, Gaussian accelerated molecular dynamics simulations in triplicate of three phosphorylated JAK2 systems: the KD alone, type-I ATP-competitive inhibitor (CI) bound KD in the catalytically active DFG-in conformation, and the type-II inhibitor (AI) bound KD in the catalytically inactive DFG-out conformation. Our results indicate significant conformational variations observed in the A-loop and αC helix motions upon inhibitor binding. Our studies also reveal that the DFG-out inactive conformation is characterized by the closed A-loop rearrangement, open catalytic cleft of N and C-lobe, the outward movement of the αC helix, and open P-loop states. Moreover, the outward positioning of the αC helix impacts the hallmark salt bridge formation between Lys882 and Glu898 in an inactive conformation. Finally, we compared their ligand binding poses and free energy by the MM/PBSA approach. The free energy calculations suggested that the AI’s binding affinity is higher than CI against JAK2 due to an increased favorable contribution from the total non-polar interactions and the involvement of the αC helix. Overall, our study provides the structural and energetic insights crucial for developing more promising type I/II JAK2 inhibitors for treating JAK-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (PK) upon reasonable request.

References

  1. Harpur AG, Andres AC, Ziemiecki A et al (1992) JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7:1347–1353

    CAS  PubMed  Google Scholar 

  2. Sasaki A, Yasukawa H, Suzuki A et al (1999) Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4:339–351. https://doi.org/10.1046/j.1365-2443.1999.00263.x

    Article  CAS  PubMed  Google Scholar 

  3. O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl):S121-131. https://doi.org/10.1016/s0092-8674(02)00701-8

    Article  PubMed  Google Scholar 

  4. Williams NK, Bamert RS, Patel O et al (2009) Dissecting Specificity in the Janus kinases: the structures of JAK-Specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol 387:219–232. https://doi.org/10.1016/j.jmb.2009.01.041

    Article  CAS  PubMed  Google Scholar 

  5. Welsch K, Holstein J, Laurence A, Ghoreschi K (2017) Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol 47:1096–1107. https://doi.org/10.1002/eji.201646680

    Article  CAS  PubMed  Google Scholar 

  6. Banfield C, Scaramozza M, Zhang W et al (2018) The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 Inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J Clin Pharmacol 58:434–447. https://doi.org/10.1002/jcph.1046

    Article  CAS  PubMed  Google Scholar 

  7. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283. https://doi.org/10.1242/jcs.00963

    Article  CAS  PubMed  Google Scholar 

  8. O’Shea JJ, Plenge R (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36:542–550. https://doi.org/10.1016/j.immuni.2012.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282:20059–20063. https://doi.org/10.1074/jbc.R700016200

    Article  CAS  PubMed  Google Scholar 

  10. Yan Z, Gibson SA, Buckley JA et al (2018) Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol 189:4–13. https://doi.org/10.1016/j.clim.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  11. Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3:900–911. https://doi.org/10.1038/nri1226

    Article  CAS  PubMed  Google Scholar 

  12. O’Shea JJ, Schwartz DM, Villarino AV et al (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328. https://doi.org/10.1146/annurev-med-051113-024537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babon JJ, Lucet IS, Murphy JM et al (2014) The molecular regulation of Janus kinase (JAK) activation. Biochem J 462:1–13. https://doi.org/10.1042/BJ20140712

    Article  CAS  PubMed  Google Scholar 

  14. Farmer LJ, Ledeboer MW, Hoock T et al (2015) Discovery of VX-509 (Decernotinib): a potent and selective Janus kinase 3 inhibitor for the treatment of autoimmune diseases. J Med Chem 58:7195–7216. https://doi.org/10.1021/acs.jmedchem.5b00301

    Article  CAS  PubMed  Google Scholar 

  15. Roskoski R (2016) Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res 111:784–803. https://doi.org/10.1016/j.phrs.2016.07.038

    Article  CAS  PubMed  Google Scholar 

  16. Taylor SS, Keshwani MM, Steichen JM, Kornev AP (2012) Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philos Trans R Soc Lond B Biol Sci 367:2517–2528. https://doi.org/10.1098/rstb.2012.0054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meharena HS, Chang P, Keshwani MM et al (2013) Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol 11:e1001680. https://doi.org/10.1371/journal.pbio.1001680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chatti K, Farrar WL, Duhé RJ (2004) Tyrosine phosphorylation of the Janus kinase 2 activation loop is essential for a high-activity catalytic state but dispensable for a Basal Catalytic State. Biochemistry 43:4272–4283. https://doi.org/10.1021/bi036109b

    Article  CAS  PubMed  Google Scholar 

  19. Feng J, Witthuhn BA, Matsuda T et al (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17:2497–2501. https://doi.org/10.1128/MCB.17.5.2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ung PM-U, Schlessinger A (2015) DFGmodel: predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors. ACS Chem Biol 10:269–278. https://doi.org/10.1021/cb500696t

    Article  CAS  PubMed  Google Scholar 

  21. McInnes C, Mezna M, Kontopidis G (2006) Catch the kinase conformer. Chem Biol 13:693–694. https://doi.org/10.1016/j.chembiol.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  22. Kornev AP, Taylor SS, Eyck LFT (2008) A helix scaffold for the assembly of active protein kinases. Proc Natl Acad Sci USA 105:14377–14382. https://doi.org/10.1073/pnas.0807988105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Kong X, Sun H, Pan P et al (2017) How does the L884P mutation confer resistance to Type-II inhibitors of JAK2 kinase: a comprehensive molecular modeling study. Sci Rep 7:9088. https://doi.org/10.1038/s41598-017-09586-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li JJ, Tu J, Cheng P et al (2016) Insights into DFG-in and DFG-out JAK2 binding modes for a rational strategy of type II inhibitors combined computational study. RSC Adv 6:45540–45552. https://doi.org/10.1039/C6RA06266K

    Article  ADS  CAS  Google Scholar 

  25. Zhao Z, Wu H, Wang L et al (2014) Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol 9:1230–1241. https://doi.org/10.1021/cb500129t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364. https://doi.org/10.1038/nchembio799

    Article  CAS  PubMed  Google Scholar 

  27. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andraos R, Qian Z, Bonenfant D et al (2012) Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov 2:512–523. https://doi.org/10.1158/2159-8290.CD-11-0324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miao Y, McCammon JA (2017) Gaussian accelerated molecular dynamics: theory, implementation, and applications. Annu Rep Comput Chem 13:231–278. https://doi.org/10.1016/bs.arcc.2017.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11:3584–3595. https://doi.org/10.1021/acs.jctc.5b00436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11:205–217. https://doi.org/10.1002/prot.340110305

    Article  CAS  PubMed  Google Scholar 

  32. Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  33. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. https://doi.org/10.1021/ar000033j

    Article  CAS  PubMed  Google Scholar 

  34. Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31:797–810. https://doi.org/10.1002/jcc.21372

    Article  CAS  PubMed  Google Scholar 

  35. Xu B, Shen H, Zhu X, Li G (2011) Fast and accurate computation schemes for evaluating vibrational entropy of proteins. J Comput Chem 32:3188–3193. https://doi.org/10.1002/jcc.21900

    Article  CAS  PubMed  Google Scholar 

  36. Eswar N, Eramian D, Webb B et al (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159. https://doi.org/10.1007/978-1-60327-058-8_8

    Article  CAS  PubMed  Google Scholar 

  37. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  38. Maestro. Schrödinger Release 2022-1: Schrödinger 2021, LLC, New York

  39. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537. https://doi.org/10.1021/ct100578z

    Article  CAS  PubMed  Google Scholar 

  40. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package: Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210. https://doi.org/10.1002/wcms.1121

    Article  CAS  Google Scholar 

  41. Case DA, Ben-Shalom IY, Brozell SR et al (2018) AMBER 2018. University of California, San Francisco

    Google Scholar 

  42. Wang J, Wang W, Kollman PA, David A (2001) Antechamber: an accessory software package for molecular mechanical calculations. J Am Chem Soc 222:U403

    Google Scholar 

  43. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  45. Homeyer N, Horn AHC, Lanig H, Sticht H (2006) AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J Mol Model 12:281–289. https://doi.org/10.1007/s00894-005-0028-4

    Article  CAS  PubMed  Google Scholar 

  46. Price DJ, Brooks CL (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121:10096–10103. https://doi.org/10.1063/1.1808117

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Loncharich RJ, Brooks BR, Pastor RW (1992) Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Biopolymers 32:523–535. https://doi.org/10.1002/bip.360320508

    Article  CAS  PubMed  Google Scholar 

  48. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  ADS  CAS  Google Scholar 

  49. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  ADS  CAS  Google Scholar 

  50. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  ADS  CAS  Google Scholar 

  51. Wang J, Arantes PR, Bhattarai A et al (2021) Gaussian accelerated molecular dynamics: Principles and applications. WIREs Comput Mol Sci. https://doi.org/10.1002/wcms.1521

    Article  Google Scholar 

  52. Miao Y, Sinko W, Pierce L et al (2014) Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput 10:2677–2689. https://doi.org/10.1021/ct500090q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Amarnath Jonniya N, Fulbabu Sk M, Kar P (2021) Characterizing an allosteric inhibitor-induced inactive state in with-no-lysine kinase 1 using Gaussian accelerated molecular dynamics simulations. Phys Chem Chem Phys 23:7343–7358. https://doi.org/10.1039/D0CP05733A

    Article  Google Scholar 

  54. Roy R, Mishra A, Poddar S et al (2020) Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virus via Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1838327

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen J, Zeng Q, Wang W et al (2022) Decoding the Identification mechanism of an SAM-III Riboswitch on ligands through Multiple Independent Gaussian-Accelerated Molecular Dynamics Simulations. J Chem Inf Model 62:6118–6132. https://doi.org/10.1021/acs.jcim.2c00961

    Article  CAS  PubMed  Google Scholar 

  56. Bhattarai A, Miao Y (2018) Gaussian accelerated molecular dynamics for elucidation of drug pathways. Expert Opin Drug Discov 13:1055–1065. https://doi.org/10.1080/17460441.2018.1538207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miao Y, Caliman AD, McCammon JA (2015) Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor. Biophys J 108:1796–1806. https://doi.org/10.1016/j.bpj.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen J, Wang W, Sun H et al (2020) Mutation-mediated influences on binding of anaplastic lymphoma kinase to crizotinib decoded by multiple replica Gaussian accelerated molecular dynamics. J Comput Aided Mol Des 34:1289–1305. https://doi.org/10.1007/s10822-020-00355-5

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Zhang J, Wang N, Miao Y et al (2018) Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements. Proc Natl Acad Sci USA 115:11129–11137. https://doi.org/10.1073/pnas.1807624115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liao J-M, Wang Y-T (2019) In silico studies of conformational dynamics of Mu opioid receptor performed using gaussian accelerated molecular dynamics. J Biomol Struct Dyn 37:166–177. https://doi.org/10.1080/07391102.2017.1422025

    Article  PubMed  Google Scholar 

  61. Wang Y-T, Chan Y-H (2017) Understanding the molecular basis of agonist/antagonist mechanism of human mu opioid receptor through gaussian accelerated molecular dynamics method. Sci Rep 7:7828. https://doi.org/10.1038/s41598-017-08224-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park JB, Kim YH, Yoo Y et al (2018) Structural basis for arginine glycosylation of host substrates by bacterial effector proteins. Nat Commun 9:4283. https://doi.org/10.1038/s41467-018-06680-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. East KW, Newton JC, Morzan UN et al (2020) Allosteric motions of the CRISPR-Cas9 HNH nuclease probed by NMR and molecular dynamics. J Am Chem Soc 142:1348–1358. https://doi.org/10.1021/jacs.9b10521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ricci CG, Chen JS, Miao Y et al (2019) Deciphering off-target effects in CRISPR-Cas9 through accelerated molecular dynamics. ACS Cent Sci 5:651–662. https://doi.org/10.1021/acscentsci.9b00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  66. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603. https://doi.org/10.1126/science.1749933

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Tsai C-J, Ma B, Nussinov R (1999) Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 96:9970–9972. https://doi.org/10.1073/pnas.96.18.9970

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Felline A, Seeber M, Fanelli F (2020) webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules. Nucleic Acids Res 48:W94–W103. https://doi.org/10.1093/nar/gkaa397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang C, Nguyen PH, Pham K et al (2016) Calculating protein-ligand binding affinities with MMPBSA: method and error analysis. J Comput Chem 37:2436–2446. https://doi.org/10.1002/jcc.24467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sk MF, Jonniya NA, Roy R, Kar P (2022) Phosphorylation-induced conformational dynamics and inhibition of Janus Kinase 1 by suppressors of cytokine signaling 1. J Phys Chem B 126:3224–3239. https://doi.org/10.1021/acs.jpcb.1c10733

    Article  CAS  PubMed  Google Scholar 

  71. Sk MF, Jonniya NA, Roy R, Kar P (2022) Unraveling the molecular mechanism of recognition of selected next-generation antirheumatoid arthritis inhibitors by Janus Kinase 1. ACS Omega 7:6195–6209. https://doi.org/10.1021/acsomega.1c06715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sk MF, Jonniya NA, Roy R et al (2020) Computational investigation of structural dynamics of SARS-CoV-2 methyltransferase-stimulatory factor heterodimer nsp16/nsp10 bound to the cofactor SAM. Front Mol Biosci. https://doi.org/10.3389/fmolb.2020.590165

    Article  PubMed  PubMed Central  Google Scholar 

  73. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394. https://doi.org/10.1002/prot.20033

    Article  CAS  PubMed  Google Scholar 

  74. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras–RalGDS complexes. J Mol Biol 330:891–913. https://doi.org/10.1016/S0022-2836(03)00610-7

    Article  CAS  PubMed  Google Scholar 

  75. Chen S-F, Cao Y, Han S, Chen J-Z (2014) Insight into the structural mechanism for PKBα allosteric inhibition by molecular dynamics simulations and free energy calculations. J Mol Graph Model 48:36–46. https://doi.org/10.1016/j.jmgm.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  76. La Sala G, Riccardi L, Gaspari R et al (2016) HRD Motif as the central hub of the signaling network for activation loop autophosphorylation in Abl kinase. J Chem Theory Comput 12:5563–5574. https://doi.org/10.1021/acs.jctc.6b00600

    Article  CAS  PubMed  Google Scholar 

  77. Liu C, Li Z, Liu Z et al (2022) Understanding the P-loop conformation in the determination of inhibitor selectivity toward the Hepatocellular Carcinoma-Associated Dark Kinase STK17B. Front Mol Biosci. https://doi.org/10.3389/fmolb.2022.901603

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gohda K, Hakoshima T (2008) A molecular mechanism of P-loop pliability of Rho-kinase investigated by molecular dynamic simulation. J Comput Aided Mol Des 22:789–797. https://doi.org/10.1007/s10822-008-9214-7

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Guimarães CRW, Rai BK, Munchhof MJ et al (2011) Understanding the Impact of the P-loop conformation on kinase selectivity. J Chem Inf Model 51:1199–1204. https://doi.org/10.1021/ci200153c

    Article  CAS  PubMed  Google Scholar 

  80. Kalaivani R, Narwani TJ, de Brevern AG, Srinivasan N (2019) Long-range molecular dynamics show that inactive forms of protein kinase A are more dynamic than active forms. Protein Sci 28:543–560. https://doi.org/10.1002/pro.3556

    Article  CAS  PubMed  Google Scholar 

  81. Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77. https://doi.org/10.1016/j.tibs.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  82. Meng Y, Roux B (2014) Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop. J Mol Biol 426:423–435. https://doi.org/10.1016/j.jmb.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  83. Liang S, Wang Q, Qi X et al (2021) Deciphering the mechanism of gilteritinib overcoming lorlatinib resistance to the double mutant I1171N/F1174I in anaplastic lymphoma kinase. Front Cell Dev Biol 9:808864. https://doi.org/10.3389/fcell.2021.808864

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang H, Zhu M, Li M et al (2022) Mechanistic insights into co-administration of allosteric and orthosteric drugs to overcome drug-resistance in T315I BCR-ABL1. Front Pharmacol 13:862504. https://doi.org/10.3389/fphar.2022.862504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qiu Y, Yin X, Li X et al (2021) Untangling dual-targeting therapeutic mechanism of epidermal growth factor receptor (EGFR) based on reversed allosteric communication. Pharmaceutics 13:747. https://doi.org/10.3390/pharmaceutics13050747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Musavizadeh Z, Grottesi A, Guarguaglini G, Paiardini A (2021) Phosphorylation, Mg-ADP, and inhibitors differentially shape the conformational dynamics of the A-Loop of Aurora-A. Biomolecules 11:567. https://doi.org/10.3390/biom11040567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vijayan RSK, He PP, Modi V et al (2015) Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem 58:466–479. https://doi.org/10.1021/jm501603h

    Article  CAS  PubMed  Google Scholar 

  88. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15:661–675. https://doi.org/10.1016/j.molcel.2004.08.024

    Article  CAS  PubMed  Google Scholar 

  89. Oruganty K, Talathi NS, Wood ZA, Kannan N (2013) Identification of a hidden strain switch provides clues to an ancient structural mechanism in protein kinases. Proc Natl Acad Sci U S A 110:924–929. https://doi.org/10.1073/pnas.1207104110

    Article  ADS  PubMed  Google Scholar 

  90. Modi V, Dunbrack RL (2019) Defining a new nomenclature for the structures of active and inactive kinases. Proc Natl Acad Sci U S A 116:6818–6827. https://doi.org/10.1073/pnas.1814279116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tsai C-C, Yue Z, Shen J (2019) How electrostatic coupling enables conformational plasticity in a tyrosine kinase. J Am Chem Soc 141:15092–15101. https://doi.org/10.1021/jacs.9b06064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Möbitz H (2015) The ABC of protein kinase conformations. Biochim Biophys Acta (BBA)—Proteins Proteom 1854: 1555–1566. https://doi.org/10.1016/j.bbapap.2015.03.009

  93. Sultan MM, Kiss G, Pande VS (2018) Towards simple kinetic models of functional dynamics for a kinase subfamily. Nature Chem 10:903–909. https://doi.org/10.1038/s41557-018-0077-9

    Article  ADS  CAS  Google Scholar 

  94. Lucet IS, Fantino E, Styles M et al (2006) The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 107:176–183. https://doi.org/10.1182/blood-2005-06-2413

    Article  CAS  PubMed  Google Scholar 

  95. Sanachai K, Mahalapbutr P, Choowongkomon K et al (2020) Insights into the binding recognition and susceptibility of Tofacitinib toward Janus Kinases. ACS Omega 5:369–377. https://doi.org/10.1021/acsomega.9b02800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arwood ML, Liu Y, Harkins SK et al (2023) New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation. Cell Chem Biol 30:618-631.e12. https://doi.org/10.1016/j.chembiol.2023.05.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Department of Science and Technology (DST), Govt. of India (grant number DST/NSM/R&D_HPC_Applications/2021/03.18). MFS would like to thank DST, Govt. of India, for providing a doctoral fellowship under the INSPIRE Fellowship Scheme (DST/INSPIRE Fellowship/2017/IF170145). SS thanks the Ministry of Education, Govt. of India, for providing a doctoral fellowship under the Prime Minister’s Research Fellows (PMRF) scheme. SP thanks the Ministry of Education, Govt. of India, for providing a doctoral fellowship under the JRF scheme.

Author information

Authors and Affiliations

Authors

Contributions

PK conceived and supervised the project. MFS, SS, and SP conducted molecular dynamics simulations and data analysis. MFS and SS wrote the manuscript. PK edited the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Parimal Kar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

There is no human or animal experiment in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 The Supplementary Information is available free of charge on the journal’s website. (DOCX 16106 KB)

Tables: Hydrogen bond for R-spine, average network properties, free energy components, binding energy decomposed, hydrogen bonding for inhibitor and JAK2.

Figures: Backbone RMSD, probability distributions, the potential of mean force (PMF), PCA analysis plot, HRD motif dynamics, the time evolution of torsional angle, A-loop free energy landscape, distance probability distribution, salt-bridge interactions of active and inactive A-loop, RDF and SASA for phosphorylated residues, network properties differences, energy decomposition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sk, M.F., Samanta, S., Poddar, S. et al. Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey. J Comput Aided Mol Des 38, 8 (2024). https://doi.org/10.1007/s10822-023-00548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10822-023-00548-8

Keywords

Navigation