Skip to main content
Log in

Adhesive Contact of Elastic Solids with Self-Affine Fractal Rough Surfaces

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The elastic adhesive contact of self-affine fractal rough surfaces against a rigid flat is simulated using the finite element method. An array of nonlinear springs, of which the force-separation law obeys the Lennard–Jones potential, is introduced to account for the interfacial adhesion. For fractal rough surfaces, the interfacial interaction is generally attractive for large mean gaps, but turns repulsive as the gap continuously shrinks. The interfacial interactions at the turning point corresponding to the spontaneous contact are shown for various surfaces. For relatively smooth surfaces, the probability density distributions of repulsion and attraction are nearly symmetric. However, for rougher surfaces, the simulation results suggest a uniform distribution for attraction but a monotonously decreasing distribution with a long tail for repulsion. The pull-off force rises with increasing ratio of the work of adhesion to the equilibrium distance, whereas decreases for solids with a higher elastic modulus and a larger surface roughness. The current study will be helpful for understanding the adhesion of various types of rough solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ. Adhesive force of a single gecko foot-hair. Nature. 2000;405(6787):681–5.

    Google Scholar 

  2. Nogata Y, Matsumura K. Larval development and settlement of a whale barnacle. Biol Lett. 2006;2(1):92–3.

    Google Scholar 

  3. Danner EW, Kan Y, Hammer MU, Israelachvili JN, Waite JH. Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue. Biochemistry. 2012;51(33):6511–8.

    Google Scholar 

  4. Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419–25.

    Google Scholar 

  5. Shi S, Wang L, Wang A, Huang R, Ding L, Su R, Qi W, He Z. Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating. J Mater Chem C. 2016;4(32):7554–62.

    Google Scholar 

  6. Zhang P, Sun F, Tsao C, Liu S, Jain P, Sinclair A, Hung HC, Bai T, Wu K, Jiang S. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc Natl Acad Sci U S A. 2015;112(39):12046–51.

    Google Scholar 

  7. Kamperman M, Kroner E, del Campo A, McMeeking RM, Arzt E. Functional adhesive surfaces with “gecko” effect: the concept of contact splitting. Adv Eng Mater. 2010;12(5):335–48.

    Google Scholar 

  8. Prokopovich P, Starov V. Adhesion models: from single to multiple asperity contacts. Adv Colloid Interface Sci. 2011;168(1–2):210–22.

    Google Scholar 

  9. Su Y, Huang Y, Hwang K. Concave biological surfaces for strong wet adhesion. Acta Mech Solida Sin. 2009;22(6):593–604.

    Google Scholar 

  10. Chong KP. Nano science and engineering in solid mechanics. Acta Mech Solida Sin. 2008;21(2):95–103.

    Google Scholar 

  11. Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: Methods, theory and applications. Chem Soc Rev. 2020;49(16):5850–84.

    Google Scholar 

  12. Ma ZY, Huang GY, Ke LL. A model of adhesive contact between a cylinder and a substrate under mixed-mode loading with effect of rolling adhesion. Mech Res Commun. 2023;131:104155.

    Google Scholar 

  13. Li Q, Kim KS. Micromechanics of rough surface adhesion: a homogenized projection method. Acta Mech Solida Sin. 2009;22(5):377–90.

    Google Scholar 

  14. Lu P. A study of particles adhesion to compliant substrates with a modified sphere contact model. Tribol Lett. 2015;58(1):6.

    Google Scholar 

  15. Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press; 1985.

    Google Scholar 

  16. Yu N, Polycarpou AA. Adhesive contact based on the Lennard-Jones potential: a correction to the value of the equilibrium distance as used in the potential. J Colloid Interface Sci. 2004;278(2):428–35.

    Google Scholar 

  17. Muller VM, Yushchenko VS, Derjaguin BV. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Colloid Interface Sci. 1980;77(1):91–101.

    Google Scholar 

  18. Muller VM, Yushchenko VS, Derjaguin BV. General theoretical consideration of the influence of surface forces on contact deformations and the reciprocal adhesion of elastic spherical particles. J Colloid Interfacial Sci. 1983;92(1):92–101.

    Google Scholar 

  19. Johnson KL, Kendall K, Roberts AD. Surface energy and the contact of elastic solids. Proc R Soc Lond A Math Phys Sci. 1971;324(1558):301–13.

    Google Scholar 

  20. Derjaguin BV, Muller VM, Toporov YP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 1975;53(2):314–26.

    Google Scholar 

  21. Tabor D. Surface forces and surface interactions. J Colloid Interface Sci. 1977;58(1):2–13.

    Google Scholar 

  22. Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8(2):100–4.

    Google Scholar 

  23. Maugis D. Adhesion of spheres: the JKR-DMT transition using a dugdale model. J Colloid Interface Sci. 1992;150(1):243–69.

    Google Scholar 

  24. Carpick RW, Ogletree DF, Salmeron M. A general equation for fitting contact area and friction vs load measurements. J Colloid Interface Sci. 1999;211(2):395–400.

    Google Scholar 

  25. Shi X, Polycarpou AA. Adhesive transition from noncontacting to contacting elastic spheres: Extension of the Maugis–Dugdale model. J Colloid Interface Sci. 2005;281(2):449–57.

    Google Scholar 

  26. Greenwood JA, Williamson JBP. Contact of nominally flat surfaces. Proc R Soc Lond A Math Phys Sci. 1966;295(1442):300–19.

    Google Scholar 

  27. Persson BNJ. Theory of rubber friction and contact mechanics. J Chem Phys. 2001;115(8):3840–61.

    Google Scholar 

  28. Wang S, Yuan W, Liang X, Wang G. A new analytical model for the flattening of Gaussian rough surfaces. Eur J Mech A-Solids. 2022;94:104578.

    MathSciNet  Google Scholar 

  29. Shen F, Li YH, Ke LL. A novel fractal contact model based on size distribution law. Int J Mech Sci. 2023;249:108255.

    Google Scholar 

  30. Li YH, Shen F, Güler MA, Ke LL. A rough surface electrical contact model considering the interaction between asperities. Tribol Int. 2023;190:109044.

    Google Scholar 

  31. Ta W, Zhao H, Zhang X, Gao Y, Zhou Y. Rough contact surface reconstruction based on A mechanical-thermal contact model. Tribol Int. 2023;177:107977.

    Google Scholar 

  32. Fuller KNG, Tabor D. The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A Math Phys Sci. 1975;345(1642):327–42.

    Google Scholar 

  33. Chang WR, Etsion I, Bogy DB. Adhesion model for metallic rough surfaces. J Tribol. 1988;110(1):50–6.

    Google Scholar 

  34. Maugis D. On the contact and adhesion of rough surfaces. J Adhes Sci Technol. 1996;10(2):161–75.

    Google Scholar 

  35. Sahoo P, Banerjee A. Asperity interaction in elastic–plastic contact of rough surfaces in presence of adhesion. J Phys D Appl Phys. 2005;38(16):2841–7.

    Google Scholar 

  36. Waghmare AK, Sahoo P. Adhesive friction at the contact between rough surfaces using n-point asperity model. Eng Sci Technol. 2015;18(3):463–74.

    Google Scholar 

  37. Jin F, Zhang W, Wan Q, Guo X. Adhesive contact of a power-law graded elastic half-space with a randomly rough rigid surface. Int J Solids Struct. 2016;81:244–9.

    Google Scholar 

  38. Violano G, Afferrante L. On DMT methods to calculate adhesion in rough contacts. Tribol Int. 2019;130:36–42.

    Google Scholar 

  39. Bhushan B, Peressadko AG, Kim TW. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for “smart adhesion.” J Adhes Sci Technol. 2006;20(13):1475–91.

    Google Scholar 

  40. Kim TW, Bhushan B. Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol. 2007;21(1):1–20.

    Google Scholar 

  41. Kwak JS, Kim TW. Simulation of the attachment system with various tip shapes contacting rough surface. J Adhes Sci Technol. 2013;27(16):1755–66.

    Google Scholar 

  42. Persson BNJ, Scaraggi M. Theory of adhesion: role of surface roughness. J Chem Phys. 2014;141(12):124701.

    Google Scholar 

  43. Morrow C, Lovell M, Ning X. A JKR-DMT transition solution for adhesive rough surface contact. J Phys D Appl Phys. 2003;36(5):534–40.

    Google Scholar 

  44. Shi X, Polycarpou AA. An elastic-plastic hybrid adhesion model for contacting rough surfaces in the presence of molecularly thin lubricant. J Colloid Interface Sci. 2005;290(2):514–25.

    Google Scholar 

  45. Attard P, Parker JL. Deformation and adhesion of elastic bodies in contact. Phys Rev A. 1992;46(12):7959–71.

    Google Scholar 

  46. Greenwood JA. Adhesion of elastic spheres. Proc R Soc A Math Phys Eng Sci. 1961;1997(453):1277–97.

    Google Scholar 

  47. Feng JQ. Contact behavior of spherical elastic particles: a computational study of particle adhesion and deformations. Colliod Surf A Physicochem Eng Asp. 2000;172(1–3):175–98.

    Google Scholar 

  48. Song Z, Komvopoulos K. Adhesion-induced instabilities in elastic and elastic–plastic contacts during single and repetitive normal loading. J Mech Phys Solids. 2011;59:884–97.

    Google Scholar 

  49. Greenwood JA, Johnson KL. Oscillatory loading of a viscoelastic adhesive contact. J Colloid Interface Sci. 2006;296(1):284–91.

    Google Scholar 

  50. Afferrante L, Violano G. On the effective surface energy in viscoelastic Hertzian contacts. J Mech Phys Solids. 2022;158:104669.

    MathSciNet  Google Scholar 

  51. Kadin Y, Kligerman Y, Etsion I. Cyclic loading of an elastic-plastic adhesive spherical microcontact. J Appl Phys. 2008;104(7):073522.

    Google Scholar 

  52. Kadin Y, Kligerman Y, Etsion I. Loading-unloading of an elastic-plastic adhesive spherical microcontact. J Colloid Interface Sci. 2008;321(1):242–50.

    Google Scholar 

  53. Song Z, Komvopoulos K. Adhesive contact of an elastic semi-infinite solid with a rigid rough surface: Strength of adhesion and contact instabilities. Int J Solids Struct. 2014;51(6):1197–207.

    Google Scholar 

  54. Pastewka L, Robbins MO. Contact between rough surfaces and a criterion for macroscopic adhesion. Proc Natl Acad Sci U S A. 2014;111(9):3298–303.

    Google Scholar 

  55. Monti JM, Sanner A, Pastewka L. Distribution of gaps and adhesive interaction between contacting rough surfaces. Tribol Lett. 2021;69(3):80.

    Google Scholar 

  56. Gujrati A, Khanal SR, Pastewka L, Jacobs TDB. Combining TEM, AFM, and profilometry for quantitative topography characterization across all scales. ACS Appl Mater Interfaces. 2018;10(34):29169–78.

    Google Scholar 

  57. Radhakrishnan H, Akarapu S. Two-dimensional finite element analysis of elastic adhesive contact of a rough surface. Sci Rep. 2020;10(1):5402.

    Google Scholar 

  58. Mandelbrot BB, Passoja DE, Paullay AJ. Fractal character of fracture surfaces of metals. Nature. 1984;308(5961):721–2.

    Google Scholar 

  59. Wang GF, Liang XM, Yan D. An incremental equivalent circular contact model for rough surfaces. J Tribol. 2021;143(8):081503.

    Google Scholar 

  60. Jia Y, Liu Z, Wu D, Chen J, Meng H. Mechanical simulation of foldable AMOLED panel with a module structure. Org Electron. 2019;65:185–92.

    Google Scholar 

  61. Blyberg L, Serrano E, Enquist B, Sterley M. Adhesive joints for structural timber/glass applications: experimental testing and evaluation methods. Int J Adhes Adhes. 2012;35:76–87.

    Google Scholar 

  62. Hyun S, Pei L, Molinari JF, Robbins MO. Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E. 2004;70(2):026117.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the OPPO Research Fund. The support from the National Natural Science Foundation of China (Grant Nos. 12372100 and 12302126) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Feng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, XM., Chen, SW., Wang, SH. et al. Adhesive Contact of Elastic Solids with Self-Affine Fractal Rough Surfaces. Acta Mech. Solida Sin. 37, 265–270 (2024). https://doi.org/10.1007/s10338-023-00461-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00461-5

Keywords

Navigation