Skip to main content
Log in

Potential reductions in fine particulate matter and premature mortality following implementation of air pollution controls on coal-fired power plants in India

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Coal-fired power plants (CFPPs) account for > 70% of electricity generation in India, but < 5% of facilities have installed technologies for sulfur dioxide (SO2) and nitrogen oxide (NOX) removal. Emissions of these pollutants lead to the formation of fine particulate matter (PM2.5) and an increased risk of premature mortality for exposed populations. Here, we use a nested version of the GEOS-Chem global chemical transport model (0.5° × 0.625° resolution) for India to estimate reductions in PM2.5 concentrations that could have been achieved by implementing existing emission control technologies like flue-gas desulfurization (FGD) and/or selective catalytic reduction (SCR). We quantify the associated burden of disease using the integrated exposure response (IER) and global exposure mortality model (GEMM) functions and compare the costs of premature mortality to those for FGD installation. Model simulations for 2010 suggest installation of FGD would have reduced mean annual PM2.5 concentrations across India by 8%, compared to 3% with SCR installation, and 11% with both FGD and SCR. A 7–28% reduction in PM2.5 was simulated for local communities closest to CFPPs (same model grid cell), leading to up to 17% reduction in annual premature mortality. Overall, more than 0.21–0.48 million premature deaths would have been avoided over a 10-year period if FGD had been implemented on all CFPPs, compared to 0.09–0.21 million with SCR and 0.22–0.72 million with both FGD and SCR. Benefits associated with such actions are approximately $18.1–$604 billion USD per year, which is equivalent to ~ 0.44 to 10% of India’s GDP. These results suggest that monetary benefits from avoided premature mortality far outweigh the capital and operational costs of FGD and/or SCR installation of $19.5 billion and/or $32.8 billion per year, respectively. This information is essential because the high costs of installation and operation are often given as reasons for delaying installation and commissioning. We conclude that policy actions to control air pollution from CFPPs are economically justifiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the study are available in the Supporting Information (SI).

References

  • Abdul Shakor AS, Pahrol MA, Mazeli MI (2020) Effects of population weighting on PM10 concentration estimation. J Environ Public Health 2020:1561823. https://doi.org/10.1155/2020/1561823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ananthapavan J, Moodie M, Milat AJ, Carter R (2021) Systematic review to update ‘value of a statistical life’ estimates for Australia. Int J Environ Res Public Health 18:6168. https://doi.org/10.3390/ijerph18116168

    Article  PubMed  PubMed Central  Google Scholar 

  • Anenberg SC, Horowitz LW, Tong DQ, West JJ (2010) An estimate of the gobal burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect 118:1189–1195. https://doi.org/10.1289/ehp.0901220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49:8057–8066. https://doi.org/10.1021/acs.est.5b01236

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bey I, Jacob DJ, Yantosca RM, Logan JA, Field BD, Fiore AM, Li Q, Liu HY, Mickley LJ, Schultz MG (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophys Res Atmos 106:23073–23095. https://doi.org/10.1029/2001JD000807

    Article  ADS  CAS  Google Scholar 

  • Botzen WJW, Martinius ML, Bröde P, Folkerts MA, Ignjacevic P, Estrada F, Harmsen CN, Daanen HAM (2020) Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands. Clim Change 162:545–562. https://doi.org/10.1007/s10584-020-02797-0

    Article  ADS  Google Scholar 

  • Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Hoek KWVD, Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Glob Biogeochem Cycles 11:561–587. https://doi.org/10.1029/97GB02266

    Article  ADS  CAS  Google Scholar 

  • Burnett RT, Pope CA, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR, Smith KR, Balmes JR, Bruce NG, Kan H, Laden F, Prüss-Ustün A, Turner MC, Gapstur SM, Diver WR, Cohen A (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122:397–403. https://doi.org/10.1289/ehp.1307049

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, Apte JS, Brauer M, Cohen A, Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim SS, Kan H, Walker KD, Thurston GD, Hayes RB, Lim CC, Turner MC, Jerrett M, Krewski D, Gapstur SM, Diver WR, Ostro B, Goldberg D, Crouse DL, Martin RV, Peters P, Pinault L, Tjepkema M, van Donkelaar A, Villeneuve PJ, Miller AB, Yin P, Zhou M, Wang L, Janssen NAH, Marra M, Atkinson RW, Tsang H, Quoc Thach T, Cannon JB, Allen RT, Hart JE, Laden F, Cesaroni G, Forastiere F, Weinmayr G, Jaensch A, Nagel G, Concin H, Spadaro JV (2018) Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci 115:9592–9597. https://doi.org/10.1073/pnas.1803222115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • CEA (2010a) Actual monthly generation reports. Central Electricity Authority (CEA), Ministry of Power, Government of India, New Delhi. https://cea.nic.in/monthly-reports-archive/?lang=en. Accessed 15 July 2022

  • CEA (2010b) Daily generation reports. Central Electricity Authority (CEA), Ministry of Power, Government of India, New Delhi. https://cea.nic.in/opm_grid_operation/daily-generation-report/?lang=en. Accessed 15 July 2022

  • CEA (2011) Performance review of thermal power stations. Central Electricity Authority (CEA), Ministry of Power, Government of India, New Delhi. https://cea.nic.in/thermal-performance-review-report/?lang=en. Accessed 7 July 2017

  • CEA (2021) A review report on new SO2 norms Notified by MOEF&CC for Thermal Power Plant [WWW Document]. https://cea.nic.in/wp-content/uploads/tprm/2021/08/A_review_report_on_new_SO2_norms.pdf/. Accessed 25 Jan 2022

  • CEA (2023) Thermal Project Renovation & Modernisation Division [WWW Document]. Central Electricity Authority. URL https://cea.nic.in/thermal-project-renovation-modernisation-division/?lang=en. Accessed 11 Sept 2023

  • Center For International Earth Science Information Network-CIESIN-Columbia University (2018) Gridded Population of the World, version 4 (GPWv4): basic demographic characteristics, revision 11. https://doi.org/10.7927/H46M34XX

  • Chikkatur AP, Chaudhary A, Sagar AD (2011) Coal power impacts, technology, and policy: connecting the dots. Annu Rev Environ Resour 36:101–138. https://doi.org/10.1146/annurev.environ.020508.142152

    Article  Google Scholar 

  • Chikkatur AP, Sagar AD (2007) Cleaner power in India: towards a clean-coal-technology roadmap. Discussion Paper 2007−06. Belfer Center for Science and International Affairs, Cambridge, USA

  • Chowdhury S, Dey S (2016) Cause-specific premature death from ambient PM2.5 exposure in India: estimate adjusted for baseline mortality. Environ Int 91:283–290. https://doi.org/10.1016/j.envint.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Dey S, Smith KR (2018) Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nat Commun 9:318. https://doi.org/10.1038/s41467-017-02755-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Conibear L, Butt EW, Knote C, Arnold SR, Spracklen DV (2018) Stringent emission control policies can provide large improvements in air quality and public health in India. GeoHealth 2:196–211. https://doi.org/10.1029/2018gh000139

    Article  PubMed  PubMed Central  Google Scholar 

  • Córdoba P (2015) Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs. Fuel 144:274–286. https://doi.org/10.1016/j.fuel.2014.12.065

    Article  CAS  Google Scholar 

  • Cropper M, Guttikunda S, Jawahar P, Malik K, Partridge I (2017) Costs and benefits of installing flue-gas desulfurization units at coal-fired power plants in India. In: Mock CN, Nugent R, Kobusingye O, Smith KR (eds) Injury prevention and environmental health. The International Bank for Reconstruction and Development / The World Bank, Washington (DC)

    Google Scholar 

  • Cropper M, Cui R, Guttikunda S, Hultman N, Jawahar P, Park Y, Yao X, Song X-P (2021) The mortality impacts of current and planned coal-fired power plants in India. Proc Natl Acad Sci 118:e2017936118. https://doi.org/10.1073/pnas.2017936118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cropper M, Gamkhar S, Malik K, Limonov A, Partridge I (2012) The health effects of coal electricity generation in India (SSRN Scholarly Paper No. ID 2093610). Social Science Research Network, Rochester, NY. https://doi.org/10.2139/ssrn.2093610

  • Cui RY, Hultman N, Edwards MR, He L, Sen A, Surana K, McJeon H, Iyer G, Patel P, Yu S, Nace T, Shearer C (2019) Quantifying operational lifetimes for coal power plants under the Paris goals. Nat Commun 10:4759. https://doi.org/10.1038/s41467-019-12618-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • David LM, Ravishankara AR, Kodros JK, Pierce JR, Venkataraman C, Sadavarte P (2019) Premature mortality due to PM2.5 over India: effect of atmospheric transport and anthropogenic emissions. GeoHealth 3:2–10. https://doi.org/10.1029/2018GH000169

    Article  PubMed  PubMed Central  Google Scholar 

  • DoF (2023) Urbanisation and urban local self-government in Chhattisgarh functional and financial decentralisation. Department of Finance, Government of Chattisgarh, India

  • Garg A, Shukla PR, Bhattacharya S, Dadhwal VK (2001) Sub-region (district) and sector level SO2 and NOx emissions for India: assessment of inventories and mitigation flexibility. Atmos Environ 35:703–713. https://doi.org/10.1016/S1352-2310(00)00316-2

    Article  ADS  CAS  Google Scholar 

  • Garg A, Shukla PR, Kapshe M (2006) The sectoral trends of multigas emissions inventory of India. Atmos Environ 40:4608–4620. https://doi.org/10.1016/j.atmosenv.2006.03.045

    Article  ADS  CAS  Google Scholar 

  • Gazette of India (2015) Extraordinary PART II—Section 3—Sub-section (ii). Regd No. D.L.-33004/99, /AGRAHAYANA 17, 1937. Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India, New Delhi

  • Gazette of India (2021) CG-DL-E-01042021-226335, Extraordinary PART II—Section 3—Sub-section (i), / CHAITRA 11, 1943. Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India, New Delhi

  • Ghude SD, Chate DM, Jena C, Beig G, Kumar R, Barth MC, Pfister GG, Fadnavis S, Pithani P (2016) Premature mortality in India due to PM2.5 and ozone exposure. Geophys Res Lett 43:1–10. https://doi.org/10.1002/2016GL068496

    Article  Google Scholar 

  • Gressent A, Sauvage B, Cariolle D, Evans M, Leriche M, Mari C, Thouret V (2016) Modeling lightning-NOx chemistry at sub-grid scale in a global chemical transport model. Atmos Chem Phys 16:5867–5889. https://doi.org/10.5194/acp-16-5867-2016

    Article  ADS  CAS  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492. https://doi.org/10.5194/gmd-5-1471-2012

    Article  ADS  Google Scholar 

  • Guo H, Kota SH, Chen K, Sahu SK, Hu J, Ying Q, Wang Y, Zhang H (2018) Source contributions and potential reductions to health effects of particulate matter in India. Atmos Chem Phys 18:15219–15229. https://doi.org/10.5194/acp-18-15219-2018

    Article  ADS  CAS  Google Scholar 

  • He J, Chen K, Xu J (2017) Urban air pollution and control, in: Encyclopedia of sustainable technologies. Elsevier, pp 243–257. https://doi.org/10.1016/B978-0-12-409548-9.10182-4

  • Inatsune Y, Takeuchi Y, Ishizaki M (2008) Completion of SCR system for Ninghai Power Plant Unit 4 in China. Hitachi Rev 57:5

    Google Scholar 

  • Joy A, Qureshi A (2023) Reducing mercury emissions from coal-fired power plants in India: possibilities and challenges. Ambio 52:242–252. https://doi.org/10.1007/s13280-022-01773-5

    Article  ADS  CAS  PubMed  Google Scholar 

  • Keller E, Newman JE, Ortmann A, Jorm LR, Chambers GM (2021) How much is a human life worth? A systematic review. Value Health 24:1531–1541. https://doi.org/10.1016/j.jval.2021.04.003

    Article  PubMed  Google Scholar 

  • Kelly JM, Marais EA, Lu G, Obszynska J, Mace M, White J, Leigh RJ (2023) Diagnosing domestic and transboundary sources of fine particulate matter (PM2.5) in UK cities using GEOS-Chem. City Environ Interact 18:100100. https://doi.org/10.1016/j.cacint.2023.100100

    Article  Google Scholar 

  • Koplitz SN, Jacob DJ, Sulprizio MP, Myllyvirta L, Reid C (2017) Burden of disease from rising coal-fired power plant emissions in Southeast Asia. Environ Sci Technol 51:1467–1476. https://doi.org/10.1021/acs.est.6b03731

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kumar N, Park RJ, Jeong JI, Woo J-H, Kim Y, Johnson J, Yarwood G, Kang S, Chun S, Knipping E (2021) Contributions of international sources to PM2.5 in South Korea. Atmos Environ 261:118542. https://doi.org/10.1016/j.atmosenv.2021.118542

    Article  CAS  Google Scholar 

  • Li M, Zhang Q, Kurokawa JI, Woo JH, He K, Lu Z, Ohara T, Song Y, Streets DG, Carmichael GR, Cheng Y, Hong C, Huo H, Jiang X, Kang S, Liu F, Su H, Zheng B (2017) MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos Chem Phys 17:935–963. https://doi.org/10.5194/acp-17-935-2017

    Article  ADS  CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, III Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA, III Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJ, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. 380:2224–2260. https://doi.org/10.1016/S0140-6736(12)61766-8.A

  • Liu X, Chance K, Sioris CE, Kurosu TP, Spurr RJD, Martin RV, Fu T-M, Logan JA, Jacob DJ, Palmer PI, Newchurch MJ, Megretskaia IA, Chatfield RB (2006) First directly retrieved global distribution of tropospheric column ozone from GOME: comparison with the GEOS-CHEM model. J Geophys Res Atmos 111. https://doi.org/10.1029/2005JD006564

  • Lu Z, Streets DG (2012) Increase in NOx emissions from Indian thermal power plants during 1996–2010: unit-based inventories and multisatellite observations. Environ Sci Technol 46:7463–7470. https://doi.org/10.1021/es300831w

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864. https://doi.org/10.5194/acp-11-9839-2011

    Article  ADS  CAS  Google Scholar 

  • Lu Z, Streets DG, de Foy B, Krotkov NA (2013) Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environ Sci Technol 47:13993–14000. https://doi.org/10.1021/es4039648

    Article  ADS  CAS  PubMed  Google Scholar 

  • MEP (2014) List of SO2 Scrubbers in coal-fired power plants. [WWW Document]. Ministry of Environmental Protection, People’s Republic of China. http://english.mep.gov.cn. Accessed 15 July 2022

  • Murray LT, Jacob DJ, Logan JA, Hudman RC, Koshak WJ (2012) Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J Geophys Res Atmos 117. https://doi.org/10.1029/2012JD017934

  • Park R, Jacob D, Field B, Yantosca R (2004) Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J Geophys Res. https://doi.org/10.1029/2003JD004473

    Article  Google Scholar 

  • Philip S, Martin RV, Pierce JR, Jimenez JL, Zhang Q, Canagaratna MR, Spracklen DV, Nowlan CR, Lamsal LN, Cooper MJ, Krotkov NA (2014) Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon. Atmos Environ 87:34–40. https://doi.org/10.1016/j.atmosenv.2013.11.065

    Article  ADS  CAS  Google Scholar 

  • Pickering KE, Wang Y, Tao WK, Price C, Müller JF (1998) Vertical distributions of lightning NOx for use in regional and global chemical transport models. J Geophys Res Atmos, pp 31203–31216. https://doi.org/10.1029/98JD02651

  • Price C, Rind D (1992) A simple lightning parameterization for calculating global lightning distributions. J Geophys Res Atmos 97:9919–9933. https://doi.org/10.1029/92JD00719

    Article  ADS  Google Scholar 

  • Ruan Y (2004) Analysis on the FGD technologies applied in thermal power plant in China(Environmental Engineering). Aij J Technol Des 10:223–226. https://doi.org/10.3130/aijt.10.223

    Article  Google Scholar 

  • Saini P, Sharma M (2020) Cause and age-specific premature mortality attributable to PM2.5 exposure: an analysis for Million-Plus Indian cities. Sci Total Environ 710:135230. https://doi.org/10.1016/j.scitotenv.2019.135230

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sarkar DK (2015) Chapter 14 - Air Pollution Control, in: Sarkar, D.K. (Ed.), Thermal power plant design and operation. Elsevier, pp 479–522. https://doi.org/10.1016/B978-0-12-801575-9.00014-7

  • Sauvage B, Martin RV, van Donkelaar A, Liu X, Chance K, Jaeglé L, Palmer PI, Wu S, Fu T-M (2007) Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone. Atmos Chem Phys 7:815–838. https://doi.org/10.5194/acp-7-815-2007

    Article  ADS  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics : from air pollution to climate change, 2nd edn. John Wiley & Sons Inc, Hoboken, New Jersey

    Google Scholar 

  • Shende P, Qureshi A (2022) Burden of diseases in fifty-three urban agglomerations of India due to particulate matter (PM2.5) exposure. Environ Eng Res 27:210042. https://doi.org/10.4491/eer.2021.042

    Article  Google Scholar 

  • Tang L, Xue X, Qu J, Mi Z, Bo X, Chang X, Wang S, Li S, Cui W, Dong G (2020) Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network. Sci Data 7:325. https://doi.org/10.1038/s41597-020-00665-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong D, Zhang Q, Davis SJ, Liu F, Zheng B, Geng G, Xue T, Li M, Hong C, Lu Z, Streets DG, Guan D, He K (2018) Targeted emission reductions from global super-polluting power plant units. Nat Sustain 1:59–68. https://doi.org/10.1038/s41893-017-0003-y

    Article  Google Scholar 

  • Van Caneghem J, De Greef J, Block C, Vandecasteele C (2016) NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: a case study. J Clean Prod 112:4452–4460. https://doi.org/10.1016/j.jclepro.2015.08.068

    Article  CAS  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441. https://doi.org/10.5194/acp-6-3423-2006

    Article  ADS  Google Scholar 

  • van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC, Lyapustin A, Sayer AM, Winker DM (2018) Global annual PM2.5 grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, pp 1998–2016

  • Venkataraman C, Brauer M, Tibrewal K, Sadavarte P, Ma Q, Cohen A, Chaliyakunnel S, Frostad J, Klimont Z, Martin RV, Millet DB, Philip S, Walker K, Wang S (2018) Source influence on emission pathways and ambient PM 2.5 pollution over India (2015–2050). Atmos Chem Phys 18:8017–8039. https://doi.org/10.5194/acp-18-8017-2018

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhao Y, Chen G, Wang F, Aunan K, Hao J (2008) Assessment of population exposure to particulate matter pollution in Chongqing, China. Environ Pollut 153:247–256. https://doi.org/10.1016/j.envpol.2007.07.030

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organ, pp 60–116

    Google Scholar 

  • Xu Y, Zhang Y, Wang J, Yuan J (2013) Application of CFD in the optimal design of a SCR–DeNOx system for a 300MW coal-fired power plant. Comput Chem Eng 49:50–60. https://doi.org/10.1016/j.compchemeng.2012.09.014

    Article  CAS  Google Scholar 

  • Yeh S, Rubin ES, Taylor MR, Hounshell DA (2007) J Air Waste Manag Assoc 55:1827–1838

    Article  Google Scholar 

  • Yienger JJ, Levy H (1995) Empirical model of global soil-biogenic NOχ emissions. J Geophys Res Atmos 11447–11464. https://doi.org/10.1029/95JD00370

  • Zhai S, Jacob DJ, Wang X, Liu Z, Wen T, Shah V, Li K, Moch JM, Bates KH, Song S, Shen L, Zhang Y, Luo G, Yu F, Sun Y, Wang L, Qi M, Tao J, Gui K, Xu H, Zhang Q, Zhao T, Wang Y, Lee HC, Choi H, Liao H (2021) Control of particulate nitrate air pollution in China. Nat Geosci 14:389–395. https://doi.org/10.1038/s41561-021-00726-z

    Article  ADS  CAS  Google Scholar 

  • Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze DK, Capps SL, Fu T-M, Zhang Q, Wang Y (2015) Source attribution of particulate matter pollution over North China with the adjoint method. Environ Res Lett 10:084011. https://doi.org/10.1088/1748-9326/10/8/084011

    Article  ADS  CAS  Google Scholar 

Download references

Funding

Financial support for this work was provided by a grant from the Harvard Global Institute (HGI) to EMS and AQ.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. AQ and EMS initiated the study and wrote and edited the manuscript. Data for the simulation was provided by ZL. PS conceptualized the plan, performed simulations, visualized the data, and wrote and edited the manuscript. The first draft of manuscript was written by PS, and all authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Asif Qureshi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

11869_2024_1503_MOESM1_ESM.docx

Supplementary file1 (DOCX 323 KB) Supporting information file includes description of emissions norms in India and further details of the model implemented in this work. The supporting information includes six tables and two figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shende, P., Lu, Z., Sunderland, E.M. et al. Potential reductions in fine particulate matter and premature mortality following implementation of air pollution controls on coal-fired power plants in India. Air Qual Atmos Health (2024). https://doi.org/10.1007/s11869-024-01503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11869-024-01503-8

Keywords

Navigation