Skip to main content
Log in

Quasi-two-dimensional strong liquid-like dynamics of surface atoms in metallic glasses

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The fast dynamic properties of the surface of metallic glasses (MGs) play a critical role in determining their potential applications. However, due to the significant difference in thermal history between atomic simulation models and laboratory-made samples, the atomic-scale behaviors of the fast surface dynamics of MGs in experiments remain uncertain. Herein, we prepared model MG films with notable variations in thermal stability using a recently developed efficient annealing protocol, and investigated their atomic-scale dynamics systematically. We found that the dynamics of surface atoms remain invariant, whereas the difference in dynamical heterogeneity between surface and interior regions increases with the improvement of thermal stability. This can be associated with the more pronounced correlation between atomic activation energy spectra and depth from the surface in samples with higher thermal stability. In addition, dynamic anisotropy appears for surface atoms, and their transverse dynamics are faster than normal components, which can also be interpreted by activation energy spectra. Our results reveal the presence of strong liquid-like atomic dynamics confined to the surface of laboratory-made MGs, illuminating the underlying mechanisms for surface engineering design, such as cold joining by ultrasonic vibrations and superlattice growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kärger, and P. Heitjans, Diffusion in Condensed Matter: Methods, Materials, Models (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), p. 970.

    Google Scholar 

  2. Y. J. Wang, J. P. Du, S. Shinzato, L. H. Dai, and S. Ogata, Acta Mater. 157, 165 (2018).

    Article  CAS  ADS  Google Scholar 

  3. J. L. Keddie, R. A. L. Jones, and R. A. Cory, Europhys. Lett. 27, 59 (1994).

    Article  CAS  ADS  Google Scholar 

  4. J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, and J. R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Z. Yang, Y. Fujii, F. K. Lee, C. H. Lam, and O. K. C. Tsui, Science 328, 1676 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. M. D. Ediger, and J. A. Forrest, Macromolecules 47, 471 (2013).

    Article  ADS  Google Scholar 

  7. G. Reiter, Europhys. Lett. 23, 579 (1993).

    Article  CAS  ADS  Google Scholar 

  8. C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, Appl. Phys. Lett. 107, 141606 (2015).

    Article  ADS  Google Scholar 

  9. I. Lyubimov, M. D. Ediger, and J. J. de Pablo, J. Chem. Phys. 139, 144505 (2013).

    Article  PubMed  ADS  Google Scholar 

  10. S. Léonard, and P. Harrowell, J. Chem. Phys. 133, 244502 (2010).

    Article  PubMed  ADS  Google Scholar 

  11. J. Ma, C. Yang, X. Liu, B. Shang, Q. He, F. Li, T. Wang, D. Wei, X. Liang, X. Wu, Y. Wang, F. Gong, P. Guan, W. Wang, and Y. Yang, Sci. Adv. 5, eaax7256 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Phys. Rev. Lett. 106, 256103 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. L. Wang, A. J. G. Ellison, and D. G. Ast, J. Appl. Phys. 101, 023530 (2007).

    Article  ADS  Google Scholar 

  14. Z. Fakhraai, and J. A. Forrest, Science 319, 600 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Chai, T. Salez, J. D. McGraw, M. Benzaquen, K. Dalnoki-Veress, E. Raphaël, and J. A. Forrest, Science 343, 994 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. F. Chen, C. H. Lam, and O. K. C. Tsui, Science 343, 975 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. G. Sun, S. Saw, I. Douglass, and P. Harrowell, Phys. Rev. Lett. 119, 245501 (2017).

    Article  PubMed  ADS  Google Scholar 

  18. A. Annamareddy, P. M. Voyles, J. Perepezko, and D. Morgan, Acta Mater. 209, 116794 (2021).

    Article  CAS  Google Scholar 

  19. S. Zhang, W. Wang, and P. Guan, Chin. Phys. Lett. 38, 016802 (2021).

    Article  ADS  Google Scholar 

  20. X. Q. Gao, W. H. Wang, and H. Y. Bai, J. Mater. Sci. Tech. 30, 546 (2014).

    Article  CAS  Google Scholar 

  21. P. Guan, M. Chen, and T. Egami, Phys. Rev. Lett. 104, 205701 (2010).

    Article  PubMed  ADS  Google Scholar 

  22. W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng.-R-Rep. 44, 45 (2004).

    Article  Google Scholar 

  23. A. L. Greer, Science 267, 1947 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. X. J. Liu, Y. Xu, X. Hui, Z. P. Lu, F. Li, G. L. Chen, J. Lu, and C. T. Liu, Phys. Rev. Lett. 105, 155501 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. W. H. Wang, J. J. Lewandowski, and A. L. Greer, J. Mater. Res. 20, 2307 (2005).

    Article  CAS  ADS  Google Scholar 

  26. R. Su, S. Zhang, X. F. Zhang, Y. Yang, and P. F. Guan, arXiv: 2208.13747.

  27. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  ADS  Google Scholar 

  28. Y. Q. Cheng, H. W. Sheng, and E. Ma, Phys. Rev. B 78, 014207 (2008).

    Article  ADS  Google Scholar 

  29. H. B. Yu, R. Richert, and K. Samwer, J. Phys. Chem. Lett. 7, 3747 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. B. Wang, B. S. Shang, X. Q. Gao, W. H. Wang, H. Y. Bai, M. X. Pan, and P. F. Guan, J. Phys. Chem. Lett. 7, 4945 (2016).

    Article  PubMed  Google Scholar 

  31. A. Ninarello, L. Berthier, and D. Coslovich, Phys. Rev. X 7, 021039 (2017).

    Google Scholar 

  32. G. N. Yang, Y. Shao, K. F. Yao, and S. Q. Chen, AIP Adv. 5, 117111 (2015).

    Article  ADS  Google Scholar 

  33. B. Wang, L. J. Wang, B. S. Shang, X. Q. Gao, Y. Yang, H. Y. Bai, M. X. Pan, W. H. Wang, and P. F. Guan, Acta Mater. 195, 611 (2020).

    Article  CAS  ADS  Google Scholar 

  34. A. Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946).

    Article  CAS  Google Scholar 

  35. Y. Zhang, and Z. Fakhraai, Phys. Rev. Lett. 118, 066101 (2017).

    Article  PubMed  ADS  Google Scholar 

  36. B. Böddeker, and H. Teichler, Phys. Rev. E 59, 1948 (1999).

    Article  ADS  Google Scholar 

  37. J. R. Dutcher, and M. D. Ediger, Science 319, 577 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. J. A. Shi, C. R. Cao, Q. H. Zhang, Y. T. Sun, C. Wang, W. H. Wang, H. Y. Bai, and L. Gu, Scripta Mater. 136, 68 (2017).

    Article  CAS  Google Scholar 

  39. A. Widmer-Cooper, and P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).

    Article  PubMed  ADS  Google Scholar 

  40. Y. Fan, T. Iwashita, and T. Egami, Nat. Commun. 8, 15417 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Y. Fan, T. Iwashita, and T. Egami, Phys. Rev. Lett. 115, 045501 (2015).

    Article  PubMed  ADS  Google Scholar 

  42. W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997).

    Article  CAS  ADS  Google Scholar 

  43. Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai, and W. H. Wang, J. Appl. Phys. 119, 205108 (2016).

    Article  ADS  Google Scholar 

  44. X. J. Han, and H. R. Schober, Phys. Rev. B 83, 224201 (2011).

    Article  ADS  Google Scholar 

  45. F. Yang, C. Wang, H. Bai, W. Wang, and Y. Liu, Commun. Mater. 2, 75 (2021).

    Article  CAS  Google Scholar 

  46. L. Song, Y. Gao, P. Zou, W. Xu, M. Gao, Y. Zhang, J. Huo, F. S. Li, J. C. Qiao, L. M. Wang, and J. Q. Wang, Proc. Natl. Acad. Sci. USA 120, e2302776120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. Chang, H. P. Zhang, R. Zhao, F. C. Li, P. Luo, M. Z. Li, and H. Y. Bai, Nat. Mater. 21, 1240 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. B. Zang, L. Song, R. Parsons, J. Shen, M. Gao, Y. Zhang, J. Huo, Y. Sun, F. Li, K. Suzuki, J. Q. Wang, and W. Wang, Sci. China-Phys. Mech. Astron. 66, 256111 (2023).

    Article  CAS  ADS  Google Scholar 

  49. L. Zhang, Y. Wang, Y. Yang, and J. Qiao, Sci. China-Phys. Mech. Astron. 65, 106111 (2022).

    Article  CAS  ADS  Google Scholar 

  50. G. Ding, F. Jiang, X. Song, L. H. Dai, and M. Q. Jiang, Sci. China-Phys. Mech. Astron. 65, 264613 (2022).

    Article  CAS  ADS  Google Scholar 

  51. B. Wang, X. Gao, and J. Qiao, Rare Metal. Mat. Eng. 53, 70 (2024).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Wang or Pengfei Guan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interests.

Additional information

Insightful discussions with Bin Xu, Shan Zhang, and LeChuan Sun are highly acknowledged. Bing Wang is sponsored by the National Natural Science Foundation of China (Grant No. 52101201), the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0369), and the Science Fund for Scientific and Technological Innovation Team of Shaanxi Province (Grant No. 2021TD-14). Pengfei Guan is supported by the National Natural Science Foundation of China (Grant No.T2325004). Rui Su is sponsored by the National Natural Science Foundation of China (Grant No. 51801046). We also acknowledge Beijing Computational Science Research Center (CSRC) for the computational support.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Gao, X., Su, R. et al. Quasi-two-dimensional strong liquid-like dynamics of surface atoms in metallic glasses. Sci. China Phys. Mech. Astron. 67, 236111 (2024). https://doi.org/10.1007/s11433-023-2273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2273-6

Navigation