Skip to main content
Log in

Boolean Valued Analysis of Banach Spaces

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We implement the Boolean valued analysis of Banach spaces. The realizations of Banach spaces in a Boolean valued universe are lattice normed spaces. We present the basic techniques of studying these objects as well as the Boolean valued approach to injective Banach lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. This means that the underlying ring of the poset \( \operatorname{Orth}^{\infty}(E) \) is a lattice and multiplication by every positive members of \( E \) is a positive band preserving operator; see [8, Definition 2.53].

  2. In the terminology of Russian provenance, the shorter term foundation is used instead of order dense ideal, which explains the above definition.

  3. Also known as Escher rules.

  4. An element \( v \) in a vector lattice \( X \) is a component or fragment of \( u\in X \) if \( |v|\wedge|u-v|=0 \).

  5. In case \( \|T\|\leq\lambda\|T_{0}\| \) with \( 1\leq\lambda\in{𝕉} \) replaces \( \|T_{0}\|=\|T\| \) in the definition of injective Banach lattice, the terms like \( \lambda \)-injectivity are applied. In this article we confine exposition to the isometric theory; i.e., we consider only 1-injective Banach lattices.

  6. The zero Banach lattice \( X=\{0\} \) is injective formally, but \( X \) fails to satisfy the claims of Corollary 7.11(1); since the Boolean algebra \( B=M(X)=\{0\} \) and the unverse \( {𝕍}^{(B)} \) degenerate in this case. By default we assume \( X \) nonzero in all similar situations.

References

  1. Kusraev A.G. and Kutateladze S.S., Boolean Valued Analysis, Springer, Dordrecht (2012) (Math. Appl., vol. 494).

    Google Scholar 

  2. Kusraev A.G. and Kutateladze S.S., Boolean Valued Analysis: Selected Topics, SMI VSC RAS, Vladikavkaz (2014) (Trends in Science: The South of Russia. A Math. Monogr. 6).

    Google Scholar 

  3. Vladimirov D.A., Boolean Algebras in Analysis, Springer, Dordrecht (2010) (Math. Appl.; vol. 540).

    Google Scholar 

  4. Kusraev A.G., Dominated Operators, Springer, Dordrecht (2010) (Math. Appl.; vol. 519).

    Google Scholar 

  5. Scott D., “Boolean models and nonstandard analysis,” in: Applications of Model Theory to Algebra, Analysis, and Probability, Holt, Rinehart, and Winston, New York (1969), 87–92.

  6. Takeuti G., Two Applications of Logic to Mathematics, Princeton University, Tokyo and Princeton (1978).

    Google Scholar 

  7. Kutateladze S.S., “What is Boolean valued analysis?” Siberian Adv. Math., vol. 17, no. 2, 91–111 (2007).

    Article  MathSciNet  Google Scholar 

  8. Aliprantis C.D. and Burkinshaw O., Positive Operators, Academic, London (2006).

    Book  Google Scholar 

  9. Cunningham F., “\( L \)-Structure in \( L \)-spaces,” Trans. Amer. Math. Soc., vol. 95, 274–299 (1960).

    MathSciNet  Google Scholar 

  10. Cunningham F., “\( M \)-Structure in Banach spaces,” Proc. Camb. Phil. Soc., vol. 63, 613–629 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  11. Harmand P., Werner D. and Wener W., \( M \)-Ideals in Banach Spaces and Banach Algebras, Springer, Berlin etc. (1993) (Lecture Notes in Math.; vol. 1547).

    Book  Google Scholar 

  12. Meyer-Nieberg P., Banach Lattices, Springer, Berlin etc. (1991).

    Book  Google Scholar 

  13. Kusraev A.G. and Kutateladze S.S, Subdifferentials: Theory and Applications, Springer, Dordrecht (1995).

    Book  Google Scholar 

  14. Cartwright D.I., Extension of Positive Operators between Banach Lattices, Amer. Math. Soc., Providence (1975) (Memoirs Amer. Math. Soc.; vol. 164).

    Book  Google Scholar 

  15. Haydon R., “Injective Banach lattices,” Math. Z., vol. 156, no. 1, 19–47 (1977).

    Article  MathSciNet  Google Scholar 

  16. Kusraev A.G. and Kutateladze S.S., “Two applications of Boolean valued analysis,” Sib. Math. J., vol. 60, no. 5, 902–910 (2019).

    Article  MathSciNet  Google Scholar 

  17. Kusraev A.G., “Boolean valued transfer principle for injective Banach lattices,” Sib. Math. J., vol. 25, no. 1, 57–65 (2015).

    Article  MathSciNet  Google Scholar 

  18. Kusraev A.G. and Kutateladze S.S., “Geometric characterization of preduals of injective Banach lattices,” Indag. Math., vol. 31, no. 5, 863–878 (2020).

    Article  MathSciNet  Google Scholar 

  19. Gierz G., Bundles of Topological Vector Spaces and Their Duality, Springer, Berlin etc. (1982) (Lecture Notes in Math.; vol. 955).

    Book  Google Scholar 

  20. Gutman A.E., “Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles,” Siberian Adv. Math., vol. 3, no. 3, 1–55 (1993); “II. Measurable Banach bundles,” Siberian Adv. Math., vol. 3, no. 4, 8–40 (1993); “III. Approximating sets and bounded operators,” Siberian Adv. Math., vol. 4, no. 2, 54–75 (1994).

  21. Ganiev I.G., “Measurable bundles of lattices and their applications,” in: Studies on Functional Analysis and Its Applications. Eds. Kusraev A.G. and Tikhomirov V.M., Nauka, Moscow (2006), 9–49.

  22. Maharam D., “On positive operators,” in: Conference in Modern Analysis and Probability (New Haven, Conn., 1982), Amer. Math. Soc., Providence (1984), 263–277 (Contemp. Math.; vol. 26).

  23. Maharam D., “On kernel representation of linear operators,” Trans. Amer. Math. Soc., vol. 79, 229–255 (1955).

    Article  MathSciNet  Google Scholar 

  24. Luxemburg W.A.J. and Schep A., “Radon–Nikodym type theorem for positive operators and a dual,” Indag. Math., vol. 40, no. 3, 357–375 (1978).

    Article  MathSciNet  Google Scholar 

  25. Luxemburg W.A.J. and de Pagter D., “Maharam extension of positive operators and \( f \)-algebras,” Positivity, vol. 6, no. 2, 147–190 (2002).

    Article  MathSciNet  Google Scholar 

  26. Luxemburg W.A.J., “The work of Dorothy Maharam on kernel representation of linear operators,” in: Measures and Measurable Dynamics. Rochester 1987, Amer. Math. Soc., Providence (1989), 177–183 (Contemp. Math.; vol. 94).

  27. Maharam D., “The representation of abstract integrals,” Trans. Amer. Math. Soc., vol. 75, 154–184 (1953).

    Article  MathSciNet  Google Scholar 

  28. Chilin V.I. and Zakirov B., “Non-commutative \( L_{p} \)-spaces associated with a Maharam trace,” J. Operator Theory, vol. 68, no. 1, 67–83 (2012).

    MathSciNet  Google Scholar 

  29. Ibragimov M.M. and Kudaibergenov K.K., “Geometric description of \( L^{1} \)-spaces,” Russian Math. (Iz. VUZ), vol. 57, no. 9, 16–21 (2013).

    Article  MathSciNet  Google Scholar 

  30. Kudaybergenov K.K. and Seipullaev Zh.Kh., “Characterization of \( JBW \)-algebras with strongly facially symmetric predual space,” Math. Notes, vol. 107, no. 4, 600–608 (2020).

    Article  MathSciNet  Google Scholar 

  31. Kusraev A.G., “Operators on injective Banach lattices,” Vladikavk. Math. J., vol. 18, no. 1, 42–50 (2016).

    MathSciNet  Google Scholar 

  32. Kusraev A.G. and Kutateladze S.S., “Geometric characterization of injective Banach lattices,” Mathematics MDPI, vol. 9(3), no. 250 (2021). doi 10.3390/math9030250

  33. Cunningham F.Jr, \( L_{1} \)-Structure in Banach Spaces. PhD Thesis Harvard University, ProQuest LLC, Ann Arbor (1953).

    Google Scholar 

  34. Behrends E., Danckwerts R., Evans R., Göbel S., Greim P., Meyfarth K., and Müller W., \( L^{p} \)-Structure in Real Banach Spaces, Springer, Berlin, Heidelberg, and New York (1977) (Lecture Notes in Math.; vol. 613).

    Book  Google Scholar 

  35. Agniel V., “\( L^{p} \)-Projections on subspaces and quotients of Banach spaces,” Adv. Oper. Theory, vol. 6 (2021) (Article 38, 47 pp.).

  36. Lotz H.P., “Extensions and liftings of positive linear mappings on Banach lattices,” Trans. Amer. Math. Soc., vol. 211, 85–100 (1975).

    Article  MathSciNet  Google Scholar 

  37. Abramovich Yu.A., “Injective envelopes of normed lattices,” Dokl. Acad. Nauk SSSR, vol. 197, no. 1, 743–745 (1971).

    Google Scholar 

  38. Grothendieck A., “Une caracterisation vectorielle-metrique des espaces \( L^{1} \),” Canad. J. Math., vol. 4, 552–561 (1955).

    Article  Google Scholar 

  39. Lindenstrauss J., Extensions of Compact Operators, Amer. Math. Soc., Providence (1964) (Memoirs Amer. Math. Soc.; vol. 48).

    Book  Google Scholar 

  40. Kusraev A.G. and Wickstead A.W., Some Problems Concerning Operators on Banach Lattices [Preprint], South. Math. Institute, Vladikavkaz (2016).

    Google Scholar 

  41. Duan Y. and Lin B.-L., “Characterizations of \( L^{1} \)-predual spaces by centerable subsets,” Comment. Math. Univ. Carolin., vol. 48, no. 2, 239–243 (2007).

    MathSciNet  Google Scholar 

  42. Semadeni Zb., Banach Spaces of Continuous Functions. Vol. 1, Polish Sci., Warszawa (1971) (Monogr. Mat.; vol. 55).

    Google Scholar 

  43. Alfsen E.M. and Effros E.G., “Structure in real Banach spaces. Parts I and II,” Ann. of Math., vol. 96, 98–173 (1972).

    Article  MathSciNet  Google Scholar 

  44. Alfsen E.M. and Shultz F.W., State Spaces of Operator Algebras. Basic Theory, Orientations, and \( C^{*} \)-Products, Birkhäuser, Boston (2001) (Math. Theory Appl.).

    Book  Google Scholar 

  45. Friedman Y. and Russo B., “Affine structure of facially symmetric spaces,” Math. Proc. Cambr. Phil. Soc., vol. 106, no. 1, 107–124 (1989).

    Article  MathSciNet  Google Scholar 

  46. Ayupov Sh.A. and Yadgorov N.Zh., “Geometry of the state space of modular Jordan algebras.,” Russian Acad. Sci. Izv. Math., vol. 43, no. 3, 581–592 (1994).

    MathSciNet  Google Scholar 

  47. Yadgorov M., Ibragimov M., and Kudaybergenov K.K., “Geometric characterization of \( L^{1} \)-spaces,” Studia Math., vol. 219, no. 2, 97–107 (2013).

    Article  MathSciNet  Google Scholar 

  48. Zakirov B.S. and Chilin V.I., “Positive isometries of Orlicz–Kantorovich spaces,” Vladikavkaz Math. J., vol. 25, no. 2, 103–116 (2023).

    MathSciNet  Google Scholar 

Download references

Funding

The research of Kusraev was executed in the North Caucasus Mathematical Research Center of the Vladikavkaz Scientific Center of the Russian Academy of Sciences and supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement 075–02–2023–914). The research of Kutateladze was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kusraev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher's Note

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusraev, A.G., Kutateladze, S.S. Boolean Valued Analysis of Banach Spaces. Sib Math J 65, 190–233 (2024). https://doi.org/10.1134/S0037446624010178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446624010178

Keywords

UDC

Navigation