Skip to main content
Log in

Heterocoagulation mechanism between galena and fine calcite minerals in flotation separation

方铅矿与微细粒方解石在矿物浮选分离中的异相凝聚机理研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Heterocoagulation between fine particles can interfere with the flotation separation of different minerals. Therefore, the study of particle heterocoagulation is significant. This study found that fine calcite affected galena flotation and examined the interactions between galena and fine calcite particles in suspension pulp. The best flotation behaviour was observed for pure galena minerals at pH 9; however, the flotation separation of galena and fine calcite yielded unsatisfactory results under these conditions. The results of zeta potential measurement, scanning electron microscopy, and X-ray photoelectron spectroscopy indicate that heterocoagulation occurred between the calcite and galena particles at pH 9. The interaction mechanism shows that dissolved hydroxy calcium could be absorbed on the surface of galena and render a positive charge, causing coagulation between the calcite and galena particles due to electrostatic attraction. This new discovery provides a reference for the pre-inhibition of gangue minerals and adjustment of the chemical ratio during the flotation process.

摘要

本研究发现微细粒方解石会影响方铅矿的浮选回收,试验研究表明在pH=9、丁基黄药用量为80 mg/L 时方铅矿浮选效果最佳。但在此条件下,方铅矿与微细粒方解石的人工混合矿中,方铅矿的浮选受到了明显的抑制,浮选效果较差。针对这一现象分析并探究方铅矿与微细粒方解石之间的相互作用机理。通过浊度分析、扫描电子显微镜分析、能谱分析、ICP 测量,XPS 分析、Zeta 电位测量等发现,方铅矿与微细粒方解石之间发生了异相凝聚。通过研究两者的相互作用机理发现,单一的方铅矿在试验所研究的pH 范围内荷负电,未检测到其等电点,单一的方解石等电点pH 约为8.5,当pH=9时单一的方解石与单一的方铅矿均荷负电,颗粒间表现的作用能为相互排斥,二者之间不会发生凝聚现象;但在方铅矿和方解石的人工混合矿中却发生了凝聚,其原因为矿浆中的方解石解离出一定数量的钙离子,钙离子通过水解作用生成羟基钙,羟基钙是导致异相凝聚的关键粒子,羟基钙荷正电,吸附在方铅矿的表面,从而改变方铅矿表面的Zeta 电位,使得方解石和方铅矿表面电位相反,通过粒子之间的相互作用力使二者发生异相凝聚。这一新发现为浮选过程中脉石矿物的预抑制和科学的化学配比调整提供了参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. MAROTO C J A, de las NIEVES F J. Colloidal stability in homo- and hetero-coagulation processes. Comparison between theoretical and experimental data [J]. Progress in Colloid and Polymer Science, 1995, 98: 89–93. DOI: https://doi.org/10.1007/bfb0115214.

    Article  CAS  Google Scholar 

  2. SASAKI H, MATIJEVI E, BAROUCH E. Interactions of a monodispersed hydrous aluminum oxide sol with polystyrene latex [J]. Journal of Colloid and Interface Science, 1980, 76: 319–329. DOI: https://doi.org/10.1016/0021-9797(80)90376-8.

    Article  ADS  CAS  Google Scholar 

  3. RALSTON J R, DUKHIN S S, MISSHCHUK N A. Wetting film stability and flotation kinetics [J]. Advances in Colloid and Interface Science, 2002, 95: 145–236. DOI: https://doi.org/10.1016/S0001-8686(00)00083-X.

    Article  CAS  PubMed  Google Scholar 

  4. HU Peng-fei, LI Qiang, LIANG Long. A review of characterization techniques of heterocoagulation between mineral particles in mineral separation process [J]. Separation and Purification Technology, 2021, 279: 119699. DOI: https://doi.org/10.1016/j.seppur.2021.119699.

    Article  CAS  Google Scholar 

  5. HEINRICH S. Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation[J]. International Journal of Mineral Processing, 2005, 78(1): 11–21. DOI: https://doi.org/10.1016/j.minpro.2005.07.002.

    Article  MathSciNet  Google Scholar 

  6. DIFEO A, FINCH J A. Sphalerite/silica interactions: model predictions [J]. International Journal of Mineral Processing, 2002, 64(4): 219–227. DOI: https://doi.org/10.1016/S0301-7516(01)00051-5.

    Article  CAS  Google Scholar 

  7. DIFEO A, FINCH J A, XU Zheng-he. Sphalerite-silica interactions: Effect of pH and calcium ions [J]. International Journal of Mineral Processing, 2001, 61(1): 57–71. DOI: https://doi.org/10.1016/S0301-7516(00)00027-2.

    Article  CAS  Google Scholar 

  8. HU Peng-fei, LIANG Long, LI Biao, et al. Heterocoagulation between coal and quartz particles studied by the mineral heterocoagulation quantifying system [J]. Minerals Engineering, 2019, 138: 7–13. DOI: https://doi.org/10.1016/j.mineng.2019.04.029.

    Article  CAS  Google Scholar 

  9. PASHLEY R M, ISRAELACHVILI J N. DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions [J]. Journal of Colloid and Interface Science, 1984, 97: 446–455. DOI: https://doi.org/10.1016/0021-9797(84)90316-3.

    Article  ADS  CAS  Google Scholar 

  10. ŠKVARLA J, KMET S. Influence of wettability on the aggregation of fine minerals [J]. International Journal of Mineral Processing, 1991, 32: 111–131. DOI: https://doi.org/10.1016/0301-7516(91)90021-A.

    Article  Google Scholar 

  11. LI Qiang, LIANG Long, HU Peng-fei, et al. Contribution of friction to the heterocoagulation between coal surface and quartz particles studied by the particle vision and measurement (PVM) [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127078. DOI: https://doi.org/10.1016/j.colsurfa.2021.127078.

    Article  CAS  Google Scholar 

  12. HU Peng-fei, LIANG Long. The role of hydrophobic interaction in the heterocoagulation between coal and quartz particles [J]. Minerals Engineering, 2020, 154: 106421. DOI: https://doi.org/10.1016/j.mineng.2020.106421.

    Article  CAS  Google Scholar 

  13. GATES C F. Sand flotation in Nature [J]. Materials Science, 1926, 64: 595–596. DOI: https://doi.org/10.1126/SCIENCE.64.1668.595-A.

    CAS  Google Scholar 

  14. KOHUMUENCH J, MANKOSA M, YAN E, et al. Advances in coarse particle recovery–fluidised-bed flotation [C]// International mineral processing congress. IMPC 2010.

  15. GRANO S. The critical importance of the grinding environment on fine particle recovery in flotation [J]. Minerals Engineering, 2009, 22: 386–394. DOI: https://doi.org/10.1016/j.mineng.2008.10.008.

    Article  CAS  Google Scholar 

  16. LI Ming-yang, XIANG Ya-hui, CHEN Tie-jun, et al. Separation of ultra-fine hematite and quartz particles using asynchronous flocculation flotation [J]. Minerals Engineering, 2021, 164: 106817. DOI: https://doi.org/10.1016/j.mineng.2021.106817.

    Article  CAS  Google Scholar 

  17. HU Yue-hua, XU Jing, QIU Guan-zhou, et al. Interparticle electrostatic and van der Waals interactions in fine-grained flotation systems [J]. Nonferrous Mining and Metallurgy, 1994, 10(2): 6–21. (in Chinese)

    Google Scholar 

  18. SULPIS O, LIX C, MUCCI A, et al. Calcite dissolution kinetics at the sediment-water interface in natural seawater [J]. Marine Chemistry, 2017, 195: 70–83. DOI: https://doi.org/10.1016/j.marchem.2017.06.005.

    Article  CAS  Google Scholar 

  19. SUGAMA T, KUKACKA L E, CARCIELLO N, et al. Study of interactions at water-soluble polymer/Ca(OH)2 or gibbsite interfaces by XPS [J]. Cement and Concrete Research, 1989, 6: 857–867. DOI: https://doi.org/10.1016/0008-8846(89)90098-7.

    Article  Google Scholar 

  20. LUO Yuan-jia, XIA Yu-qin, ZHOU Han-yu, et al. Effect of calcium ions on surface properties of chalcopyrite and arsenopyrite and its response to flotation separation under low-alkalinity conditions [J]. Applied Surface Science, 2022, 602: 154191. DOI: https://doi.org/10.1016/j.apsusc.2022.154191.

    Article  CAS  Google Scholar 

  21. HAN Wen-Jing, ZHU Yi-Min, GE Wen-Cheng, et al. Flotation separation of fluorite from calcite by a new depressant curdlan and its mechanism [J]. Journal of Central South University, 2023, 30(3): 800–810. DOI: https://doi.org/10.1007/s11771-023-5282-z.

    Article  CAS  Google Scholar 

  22. HUANG Zhi-qiang, SHUAI Shu-yi, BUROV V E, et al. Application of a new amidoxime surfactant in flotation separation of scheelite and calcite: Adsorption mechanism and DFT calculation [J]. Journal of Molecular Liquids, 2022, 364: 120036. DOI: https://doi.org/10.1016/j.molliq.2022.120036.

    Article  CAS  Google Scholar 

  23. LIAO Run-peng, WEN Shu-ming, LIU Jian, et al. Flotation separation of fine smithsonite from calcite using sodium hexametaphosphate as the depressant in the Na2S-Pb(II) - KIAX system [J]. Separation and Purification Technology, 2022, 295: 121245. DOI: https://doi.org/10.1016/j.seppur.2022.121245.

    Article  CAS  Google Scholar 

  24. CHEN Yuan-lin, GUO Xue-yi, CHEN Yan-fei. Using phytic acid as a depressant for the selective flotation separation of smithsonite from calcite [J]. Separation and Purification Technology, 2022, 302: 122104. DOI: https://doi.org/10.1016/j.seppur.2022.122104.

    Article  CAS  Google Scholar 

  25. YANG Duo, LI Bo-qi, FENG Dong-xia, et al. Flotation separation of smithsonite from calcite with guar gum as depressant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129562. DOI:/https://doi.org/10.1016/j.colsurfa.2022.129562.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overalling research goal was jointly formulated by WANG Rui-kang, LAN Zhuo-yue and ZHAO Qing-ping. WANG Rui-kang and ZHAO Qing-ping conducted experimental exploration and analyzed the measured data. FENG Dong-xia made adjustments to the writing and editing of the article. YANG Di analyzed the calculation results. TONG Xiong conducted methodological and research investigations. The first draft was co-written by WANG Rui-kang, LAN Zhuo-yue, FENG Dong-xia and ZHAO Qing-ping. All authors responded to hte reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Zhuo-yue Lan  (蓝卓越).

Ethics declarations

WANG Rui-kang, LAN Zhuo-yue, FENG Dong-xia, ZHAO Qing-ping, YANG Di, and TONG Xiong declare that they have no conflict of interest.

Additional information

Foundation item: Project(5196040249) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Rk., Lan, Zy., Feng, Dx. et al. Heterocoagulation mechanism between galena and fine calcite minerals in flotation separation. J. Cent. South Univ. 31, 127–137 (2024). https://doi.org/10.1007/s11771-024-5564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5564-0

Key words

关键词

Navigation